SAPIENZA

UNIVERSITA DI ROMA

Facolta di Ingegneria
Tesi di Laurea Specialistica in:

INGEGNERIA DELLE TELECOMUNICAZIONI

COGNITIVE NETWORKING:

Network Sensing with application to IEEE 802.11

communication systems

Candidato: Relatore:

Jesus Roldan Diaz Prof.ssa Maria-Gabriella Di Benedetto

Anno Accademico 2009/2010

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Acknowledgements

First, I would like to thank my parents for their support throughout
all these years of studying. Without them, this experience would not have
been possible. Special thanks go to Cristina Roldan, always helping me to
improve my English and my grammar, no matter the time it took to

achieve this: you are so special.

I wouldn’t be done without acknowledging Professor Maria-Gabriella
Di Benedetto’s contribution to my development as a person and an
Engineer: You're the best boss and teacher anyone could hope to have.
Thank you for believing in us since the very beginning, and for giving us
the opportunity to work with you these eight months. The things I've

learned over this period are simply priceless.

During my stay at the ACTS Laboratory, I met two incredible people
who also happen to be magnificent researchers. They made every day a
funnier and easier one. Thank you, Luca, for the indoor soccer matches

invitations; and Dome, for your assertive advice in all categories of life.

Thank to my fellows Stefano and Sergio for helping me with the
language and guiding me through Italian manners. You made our

workplace even better.

Finally, I would like to thank my partner, Carmen. You alone made
these the best years of my life. It has been a struggle, but I wouldn’t have
made it without your endless love and support. I am sure times to come

will just get better. I am so grateful to have you in my life!

I consider myself very fortunate to have met each and every one of
you. I appreciate your availability and dedication to me. Total thanks to

you all.

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Table of Contents

Chapter 1
Introduction S
1.1 Cognitive Radio/Networking: State of the art & History 6
1.2 Coexistence of Heterogeneous wireless networks on ISM band 12
1.3 Description of the AIR-AWARE project 14
1.4 Motivation and purpose of this work 19
Chapter 2
Network Sensing applied to IEEE 802.11 Communication Systems 22
2.1 Introduction to packet capturing: Sniffers 23
2.2 Getting Raw-Traffic from an IEEE 802.11 scenario 28
2.3 Sniffer design and implementation 33

2.4 Importing the sniffer extracted data into a higher-level programming language:

MATLAB 35
Chapter 3

IEEE 802.11 Real Traffic Analysis 37

3.1 Strategy 38

3.2 Features Selection 39

3.3 Features characteristics for multiple captures 45

3.3.1 PPDUs Duration Feature 46

3.3.2 SIFS Feature 48

3.3.3 Beacon Periodicity Feature 51

3.4 Fitting SIFS feature to a Probability Density Function using experimental data 54
Chapter 4

Testing selected features in a multi-network environment 58

4.1 Analyzing SIFS feature extraction inside a 802.15.1 Network communication pattern 59

4.2 Future work 63
Chapter 5

Conclusions 64

Bibliography

References 66
Appendix

Developed Codes 70

7.1 Sniffer Code 71

7.2 MATLAB Developed functions and scripts 98

7.3 Elaborated Paper: “Automatic Network recognition by feature extraction: A case study in

the ISM band” 107

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

List of Figures
FIGURE 1.1-ISM OPERATIONAL FREQUENCY BAND CHART 14
FIGURE 1.2-AIR-AWARE DEVICE SCHEMA 17
FIGURE 2.1-IEEE 802.11A PPDU FORMAT 30
FIGURE 2.2-1EEE 802.11B LONG-PREAMBLE PPDU FORTMAT 30
FIGURE 2.3-1EEE 802.11B SHORT-PREAMBLE PPDU FORMAT 31
FIGURE 2.4-1EEE 802.11G LONG-PREAMBLE PPDU FORMAT (DSSS-OFDM) 31
FIGURE 2.5-1EEE 802.11G SHORT-PREAMBLE PPDU FORMAT (DSSS-OFDM) 32
FIGURE 2.6-SNIFFER CAPTURE EXAMPLE 34
FIGURE 2.7-TIME DIAGRAM WITH BEACON FRAMES 36
FIGURE 2.8-TIME DIAGRAM WITH DATA-ACK PROCEDURE 36
FIGURE 3.1-ILLUSTRATION OF MULTIPLE IFSS 40
FIGURE 3.2-TX OF MULTIPLE MSDU'S FRAGMENTS USING SIFS 41
FIGURE 3.3-PPDUS DURATION FEATURE 46
FIGURE 3.4-PPDUS DURATION FEATURE 46
FIGURE 3.5-PPDUS DURATION FEATURE 46
FIGURE 3.6-PPDUS DURATION FEATURE 46
FIGURE 3.7-SIFS FEATURE 48
FIGURE 3.8-SIFS FEATURE 48
FIGURE 3.9-SIFS FEATURE 48
FIGURE 3.10-SIFS FEATURE 48
FIGURE 3.11-SIFS FEATURE 48
FIGURE 3.12-SIFS FEATURE 48
FIGURE 3.13-BEACON PERIODICITY FEATURE 51
FIGURE 3.14-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.15-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.16-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.17-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.18-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.19-SIFS HISTOGRAM VS. ESTIMATED GAUSSIAN PDF 56
FIGURE 3.20-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 3.21-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 3.22-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 3.23-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 3.24-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 3.25-SIFS HISTOGRAM VS. PROPOSED GAUSSIAN PDF 57
FIGURE 4.1-RX-TX CYCLE OF BLUETOOTH MASTER TRANSCEIVER IN CONNECTION STATE 60
FIGURE 4.2-SIFS FEATURE EXTRACTION FROM WI-FI AND BLUETOOTH PATTERNS 61

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Chapter 1

INTRODUCTION

1.1 Cognitive Radio/Networking: State of the art & History
1.2 Coexistence of wireless technologies operating on ISM band
1.3 Description of the AIR-AWARE project

1.4 Motivation and purpose of this work

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

1.1 COGNITIVE RADIO/NETWORKING: STATE OF THE ART & HISTORY

Lately, the research community has been devoting much attention to
the Cognitive Radio and Cognitive networks paradigms. Characterized by
the addition of cognition capabilities -reasoning and learning- to wireless
devices and networks, Cognitive Radios and networks are being developed
in an effort to provide enhanced adaptability and re-configurability to

overcome the common challenges of radio communications.

Officially, the idea of cognitive radio was presented for the first time
in an article by Joseph Mitola III and Gerald Maguire Jr., as a new way to
approach wireless communication inserting in network’s life a device that
will be able to detect user communications needs as a function of use
context and provide radio resources and wireless services most appropriate

to those needs.

Mitola III described cognitive radio in [25] as “the point in which
wireless PDAs and related networks become, in computational terms,
intelligent enough in regards to radio resources and communications
between computers to be able to detect the eventual communication needs
of the user as function of the use context and to respond to it by assigning

the most adequate wireless services and radio resources right away”.

Mitola’s definition is one of wide scope: the term radio here would
identify any generic mobile terminal wused for communication -—
smartphones, laptops or PDAs fall onto this category. Here, the terminal is
assumed to perform as an intelligent agent: devices will need to observe
the environment, evaluate possible strategies and make optimal decisions

to satisfy user’s needs; while learning from every experience.

Today, the most popular conception of Cognitive Radio denotes
spectrum-agile devices capable of performing Dynamic Spectrum Access

[29]&([29]. The use of the term “radio” has been largely interpreted as
6

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

referring to the lower-layer characteristics of wireless communications,
particularly the physical (PHY) layer. From a Game theory approach,
Dynamic Spectrum sensing falls in this category of human behavior —such
as cooperation and competition: analyzing a problem by comparing possible
strategies to be adopted by the Cognitive Radio. In much the same
approach, a Cognitive Network, as formulated by Thomas et al. [31], is
view as a society: all networking devices interact among themselves on the

pursuit of the own network’s best performance.

Yet, in other cases, the term cognitive has been interpreted more in
the sense of acting rationally, when Cognitive Radios are viewed as
Intelligent Agents performing its actions to provide satisfactory
communication services. Here, Artificial Intelligence techniques are used to
solve the evaluation, optimization, decision and learning problems that

arise.

Amongst the application proposed by Mitola III in [25] we find
spectrum pooling, offering mobile users the opportunity to negotiate
spectrum access tailored to their communication needs, to overcome

licensing issues.

This application makes a great deal in today’s reality: now, the
brunt of available spectrum is already allocated to specific services, and -
with the ever increasing demand for wireless connectivity- spectrum

availability could be one of the biggest challenges.

Nowadays, unlicensed bands, such as the 2.4 GHz ISM band, are the
hottest usage spots, hosting several protocols contemporaneously (802.11,
Bluetooth, Zigbee and WiMAX, to name a few). As a result, Dynamic
Spectrum Access techniques have raised ever-growing interest; making
devices performing this task the most common interpretation of the term
Cognitive Radio (as stated on its formal definition by the Federal

Communications Commission [29]).

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Cognitive radio was therefore conceived as the objective of the
evolution of software defined radio platforms. It should become completely
reconfigurable wireless system —as a “black box”- that was able to adjust its
communication parameters automatically depending on the demands of the

network and its users.
These are some of fundamental functions of Cognitive Radio are:

. Spectrum Sensing: A relevant requisite for appropriate functioning
of cognitive radios is to be able to detect underutilized spectrum and utilize
it without provoking negative interference to other users. The best way to
find such “holes” in the spectrum is detecting legitimate users. Techniques

to detect changes in the spectrum can be classified in three groups:

. Transmission Detection: Cognitive radios need to be in capacity to
determine the presence of signal of any user utilizing a concrete part of the

spectrum.

. Spectrum Administration: Assign and utilize the bandwidth that fits
best the QoS required by the user amongst all available bandwidths.
Spectrum administration follows two distinguishable steps: spectrum

analysis and spectrum decision.

. Spectral mobility: The process by which a cognitive radio changes its
frequency of transmission or reception. Cognitive radios are designed to
constantly switch bands in search of the best fitting in a way that is

1imperceptible to primary users.

. Spectrum Sharing: Find a schematic method of spectrum
distribution that is just and equitable to all cognitive radio users without
interfering primary users’ transmissions. This represents one of the
greatest challenges of developing cognitive radios; the problem is similar to

the generic issues of medium access (MAC) that plague today’s systems.

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

This thesis study focuses on the ISM band, a populated and multi-
channel band. Medium Access control poses significant challenges in a
Dynamic Spectrum Access system, due to the difficulties in handling
multiple channels. To cope with this issue, several solutions have been

proposed in the recent literature.

In [32] the Dynamic Channel Access (DCA) scheme is proposed as a
modification of the 802.11 MAC tailored to multi-channel ad-hoc networks.
The DCA scheme introduces modifications to the RTS/CTS mechanism to
include channel availability and preference information. The solution
requires terminals to have two separate wireless interfaces -where one
must transmit and receive on a fixed control channel, while the other is

used for data transmission on dynamically selected channels.

Another modified version of 802.11 targeting unlicensed reuse of
licensed spectrum is KNOWS [33]. Its main characteristics are cooperative
sensing amongst nodes to identify unused spectrum bands, and resource

advertising and reservation performed by means of the newly defined
RTS/CTS/DTS handshake in place of the traditional 802.11 RTS/CTS.

Another multi-channel MAC protocol is proposed in [34]. This
proposal purviews the use of a dedicated control channel. In [35], a
distributed scheme with the aim to dynamically allocate frequencies to

access points in infrastructured 802.11 WLANS is described.

Moving forward from the term Cognitive Radio, Cognitive Networks
have been the “talk of the town”. The concept of a Cognitive Network,
already foreseen by Mitola, when in [25] he suggested that his cognitive
radios could interact within the system-level scope of a Cognitive Network.
However, the contribution of Mitola to Cognitive Networking does not go

much beyond Cognitive Radio.

In 2005 [36] Thomas et al. define a Cognitive Network as possessing

a “cognitive process that can perceive current network conditions, and then

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

plan, decide and act on those conditions”, and which can “learn from these
adaptations and use them to make future decisions, all while taking into
account end-to-end goals”. The same team analyzes similarities and
differences between Cognitive Radio, Cross-layer Optimization and
Cognitive Networks; one relevant similarity is that Cognitive Networks are
foreseen to be based on the so-called Software Adaptable Network, just as
Cognitive Radio is based on Software Defined Radio. Lake [37] proposed a

similar approach: the Software Programmable Intelligent Network.

Cognitive Radio and Networking has quickly emerged as a
promising wireless paradigm, researched in laboratories around the world.
Eventually, the paradigm is expected to integrate benefits of software-
defined radio with a complete aware communication behavior. To achieve
this, a need for powerful algorithms for sensing the external environment
needs to be fulfilled. In this dissertation, an algorithm that provides
automatic detection of IEEE 802.11 networks present in the ISM band is
proposed, exploiting the band information provided by a spectrum sensing

generic device, 1.e. an energy detector.

Previous work, as for example [22], has addressed a similar problem,
by classifying Wi-Fi vs. Bluetooth, using a spectrum sensing procedure
based on distributed detection theory. The present thesis extends beyond
previous investigations by considering Wi-Fi real traffic captures, and by
focusing feature extraction and classification on MAC sub-layer

characteristics, leading to simplicity and computational efficiency.

The AIR-AWARE project that serves as umbrella for this work
(described to extent in section 1.3) aspires to implement a cognitive radio
node for the ISM band, particularly the spectrum sensing and classification
module, i.e. a generic device that provides classification in terms of
technologies present in the air interface. In this way, the road is paved for
a cognitive engine [28] that, utilizing the obtained information, can make

Instantaneous decisions over multiple transmission parameters of nodes

10

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

belonging to different networks (operating in the ISM 2.4GHz band) inside

a crowded heterogeneous environment.

11

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

1.2 COEXISTENCE OF HETEROGENEQOUS WIRELESS NETWORKS ON ISM BAND

The most relevant example of co-existence of heterogeneous wireless
networks in unlicensed bands is WLAN IEEE 802.11b/g and Bluetooth
networks, both using and sharing the ISM band around 2.45 GHz. Two
preemptive approaches can be taken to prevent interference in multi-
network environments: the collaborative approach, where radios of
different technologies exchange information regarding frequency of
spectrum usage; and the non-collaborative approach, where a radio device
sensed the frequency of spectrum occupancy and determines channel

definition without communicating with other possible users.

The first, or collaborative, case will require both a common signaling
protocol to negotiate the local frequency/time allocation and the optional
establishment of orthogonal channel to prevent mutual interference. Here,
either dual radio systems —with one acting as the common radio- or a
single radio processing both its own protocol and the common one are

required.

In the second, non-collaborative case, typically used by short-range,
ad-hoc radio systems, a radio device considers the local spectrum
conditions and reacts accordingly. In this approach there will not be a
central Cognitive Radio controlling device instructing the other devices
about radio parameters choices. When a common control channel is not
predefined, the challenge that emerges is how to inform all peer devices

operating on the same band.

Cognitive Radio devices define their radio parameters in order to
produce minimum impact over other spectrum users. This makes the non-
collaborative techniques more fitting for unlicensed bands where users
expect and tolerate moderate amounts of interference. However, in
incumbent QoS radio systems, operating in licensed bands, a controlled

and predefined level of interference becomes necessary. This poses the

12

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

challenge of either restructuring such systems in order to introduce
Cognitive Radios or incorporate additional devices that monitor

interference locally and communicate any possible violations to all devices.

Particularly in medium to high traffic environments, such as packet-
based wireless systems —typically used for Internet access- it is not clear
how often and for how long the CR shall carry out a detection process.
Repeated detection may present high overhead signaling, which may affect

the CR link performance and the power consumption.

In the AIR-AWARE project, we propose the design and deployment
of module that automatically recognizes what kind of network technologies
are operating on the ISM band by feature extraction. This module will be
on-line in such way that it can detect variations in spectrum’s status in
real time. The device will extract information regarding the ISM band
through an energy detector that obtains information in all 802.11 channels;
detecting presence of Bluetooth, Wi-Fi, Zigbee and other ISM band

networks, by implementing passive feature extraction with low complexity.

The low complexity classification module will enable a Cognitive
Radio node to make immediate decisions —based on real time band status
information- to cover users —from all the different ISM networks- needs in

the most efficient manner possible at any given moment.

13

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

1.3 DESCRIPTION OF THE AIR-AWARE PROJECT

This work is developed under the umbrella of AIR-AWARE Project,
created with the objective of achieving differentiation —in any scenario-

between present technologies and interference entities on the ISM Band.

Frequency range [Hz] Center frequency [Hz] Availability
6.765-6.795 MHz 6.780 MHz Subject to local acceptance
13.553-13.567 MHz 13.560 MHz

26.957-27.283 MHz |27.120 MHz

40.66—40.70 MHz 40.68 MHz

433.05-434.79 MHz | 433.92 MHz

902-928 MHz 915 MHz Region 2 only

2.400-2.500 GHz 2.450 GHz

5.725-5.875 GHz 5.800 GHz

24-24.25 GHz 24.125 GHz

61-61.5 GHz 61.25 GHz Subject to local acceptance
122-123 GHz 122.5 GHz Subject to local acceptance
244-246 GHz 245 GHz Subject to local acceptance

Figure 1.1 - ISM Operational Frequency Band Chart

With the increasing diffusion of technologies operating on the ISM
Band (llustrated on Figure 1.1), we noticed the relevance of creating a
device (as a black box) capable of detecting and classifying different
technologies networks present in a determined environment, as well as
types of interferences in play. The information such a device will provide
will support adjustment of radio resources and wireless services in the
most appropriate way to fulfill the needs of each specific network. In order
to do this, feedback between the device and different networks nodes of the
distinct wireless technologies operating in that band, in a cognitive radio’

context will be necessary.

“

According to Mitola and Maguire (1999) cognitive radio “is a radio frequency
transmitter/receiver that is designed to intelligently detect whether a particular segment of the radio
spectrum is currently in use, and to jump into (and out of, if necessary) the temporarily-unused
spectrum very rapidly, without interfering with the transmission of other authorized users.”[25]

14

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

This above proposed classification is of vital relevance, considering
that many commercial technologies are operating in this range of the
spectrum (2.4GHz ISM band). The following list shows some examples of
ISM operating technologies:

. IEEE 802.11 networks: operating both over the 2.4GHz
and 5.8GHz bands.

" Bluetooth: operates over the 2.4GHz ISM band, using
Frequency Hopping and chooses any of the 79 available
channels on its operating band (80 MHz).

. HIPERLAN [High Performance Radio LAN]: An
European alternative to IEEE 802.11, operating on the
5.8GHz bands in order to avoid interference entities present

on the 2.4GHz range.

. Closed Circuit TV: Many security cameras operate over

the band 2.4GHz ISM band.

" ZigBee IEEE 802.15.4: Wireless Data Networks
operating in the 2.4 GHz ISM band.

" Wireless Mouse and Keyboard: Operating in the
2.4GHz band.

Regarding the interference entities in this band, probably the most
common one is the microwave oven, which emits a very high power signal
at a 2.45 GHz frequency’, compromising temporarily the quality of an
IEEE 802.11 network or a WPAN. Baby monitors operate also in the
2.4GHz band creating possible interference for 802.11 and Bluetooth

2 This can cause considerable difficulties to Wi-Fi and Video senders, resulting in reduced

range or complete blocking of the signal.

15

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

networks. Our last usual offender is the traditional DECT standard
cordless phone, operating in the 1.9 GHz band, and able to interfere with
the quality of connection in the first channels of a Wi-Fi network when in

use.

The final goal of the AIR-AWARE project is to implement a
classification strategy based on information regarding protocol layers above
the physical one (PHY). In particular, the objective is to identify MAC sub-
layer [1] specific features for each of the ISM 2.4GHz band operating
technologies. Previous work, as for example [22], has addressed a similar
problem, by classifying Wi-Fi vs. Bluetooth, using a spectrum sensing
procedure based on distributed detection theory. The present project will
try to extend beyond previous investigations by considering real traffic
captures, and by focusing feature extraction and classification on MAC sub-
layer communication procedures for different technologies networks,

leading to simplicity and computational efficiency.

To achieve the mentioned goal, a device that is able to sense the
spectrum with a good time resolution on the ISM 2.4GHz band must be
built: the AIR-AWARE module. This module was conceived with the idea of
a generic hardware, including an energy detector or radiometer as in [2],
that provides information about the energy level in the whole ISM Band
overtime. Evidently, with this piece of hardware, we will not be in a
position to demodulate and decode the distinct signals in the air; we
however, will be able to statistically study temporization of presence or
absence of energy (i.e. packets) in different ISM sub-bands in real time. A
software module (provided with classifiers) that analyzes pattern provided
by the above-mentioned energy detector must be incorporated. This
analysis should recognize similarity between presence/absence of energy
periods and a Packet interchange sequence in an IEEE 802.11 network, a

Bluetooth network or any other ISM band operating technology network.

16

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Pattern f 3

ENERGY DETECTOR

Figure 1.2- AIR-AWARE Device Schema

Figure 1.2 illustrates how also one classifiers block thought for each
technology automatic recognition is embedded into the AIR-AWARE
module. This device will great scalability, as can be easily noted, it will not
be necessary to embed another adapted receiver every time a new available
technology is desirable to classify; the update will be performed through
programming a new software module with information of the PHY packet

interchange behavior of this new technology network.

This software block (algorithms) will take a pattern (of energy
variation over time) as an input. The above pattern will then undergo a
feature extraction and, by way of classification algorithms®, it will be
recognized each pattern’s observation interval as a specific kind of known
network packet interchange, by feature matching. To that end, it will be
necessary to study in depth the MAC sub-layer communications procedures
of each and every commercial technology operating in this band —in terms
of temporization of PHY packet interchange-. In addition, as allowed by our
resources, it would be desirable a similar study for common interference
entities —in terms of presence/absence of energy temporization while

functioning—.

® This classifier would make a decision in function of its training set [3], provided in this project by
making clean captures for each network technology operating in 2.4 GHz band.

17

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

In order to correctly select each technology features, it would be
necessary achieve network sensing —packet capturing— for each one. Each
workgroup is working independently during this preliminary phase of the
project. Once packet capturing for each technology is achieved, could be
verified the validity of the chosen features. Finally, these entire packet

captures will be used as training set for our classifiers.

The final step of this phase is to test every software classification
block and evaluate its performance in different scenarios. Later on, all
modules will be integrated and a tested run will evaluate how they work
together classifying a pattern that includes traffic from networks of

different technologies and interference entities.

18

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

1.4 MOTIVATION AND PURPOSE OF THIS WORK

Network sensing together with an exhaustive research of typical
MAC communication procedures for IEEE 802.11 communication systems,
was the starting pre-requisite to kick off AIR-AWARE project (as described
on 1.3). To this end, in this work, was developed an IEEE 802.11 packet
capturing application (described in detail in Chapter 2), which provides

real and clean IEEE 802.11 network’s PPDUs" sequences.

The above-mentioned network sensing is necessary to generate an
accurate analysis of the IEEE 802.11 PPDUs interchange temporization in
real world, enabling us to verify if the selected features based on MAC sub-
layer communications procedures are strong enough in real conditions.
Feature identification here proposed, lays its foundation on the observation
that packet interchange patterns are technology-specific. As such, by
identifying patterns clues, network recognition could be achieved. The
above features must be selected in a way that could be extracted from the

pattern delivered by the energy detector —information independent—.

The TEEE 802.11 traffic analysis made on Chapter 3, was based on
captures developed in a “clean scenario™, which allowed to characterize

precisely the IEEE 802.11 PPDUs interchange based on its temporization.

Evidently, thinking at the AIR-AWARE module, the extracted pattern —
energy detector’s output— will be contaminated by the traffic of different

technologies and interference entities. As a consequence of this, we propose

* PLCP Protocol Data Unit (wireless LANs), Wi-Fi PDU as sent over the air interface.

> We define “clean scenario” as one in which only the chosen technology is present. This is
almost impossible in reality, but because the developed Sniffer receives information from the
network wireless adapter of the computer —which is matched for IEEE 802.11 signals- it can
take as interference any other traffic type present within the band, and not display it on the
capture file.

19

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

extracting multiple features in different time® intervals to this pattern, and
comparing them to the each technology’s proposed ones through linear
classifiers; this way, will be possible to recognize what kind of network or

interference are present in the air.

In conclusion, particularly this work provides AIR-AWARE project
with feature selection and statistical characterization for IEEE 802.11
PPDUs interchange in the 2.4GHz band (version b/g). This data will be
utilized, in a later stage of the project, by linear classifiers that will
compare these reliable features against pattern’s ones, building the
software block described on Figure 1.2. In addition, real IEEE 802.11
PPDUs sequences obtained by network sensing procedures will be utilized

for above classifiers as training set for this technology.

Preliminary results of this work are reported in “Automatic network
recognition by feature extraction: a case study in the ISM band’ (see
Appendix), by Maria-Gabriella Di Benedetto, Senior Member, IEEE,
Stefano Boldrini, Camen Juana Martin Martin, and Jesus Roldan Diaz.
Paper accepted for publication in Proceedings of the 5th International
Conference on Cognitive Radio Oriented Wireless Networks and
Communications, Special Session on Cognitive Radio and Networking for
Cooperative Coexistence of Heterogeneous Wireless Networks, June 9-11

2010, Cannes, France.

The rest of this thesis is organized as follows. In Chapter 2 we will
provide detailed description of network sensing applied to this work. The
purpose of this chapter will be to make the reader familiar with packet
capturing and sniffing concepts, also to describe how experimental-data
from 802.11 PPDUs interchange was achieved. In the subsequent two

chapters, we will present the major contribution of this thesis: A robust

® Study time will depend on the quantity interference entities and technologies operating in
the medium. We predict that some time intervals —on the pattern extracted by the energy
detector- can be recognized respectively as traffic types and technologies in the air.

20

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

feature for automatic recognition of Wi-Fi networks inside a multi-network
environment. In particular, Chapter 3 will propose different features and
extraction algorithms. Chapter 4 will test the strongest Wi-Fi proposed
feature inside a Bluetooth network pattern. In Chapter 5 the conclusions
will be drawn. Finally, in Appendix section all developed codes for this
research —Sniffer Code and Data processing Codes- will be reported, and
also the Crowncom 2010 accepted paper “Automatic network recognition by
feature extraction: a case study in the ISM band” with first results of this

research.

21

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Chapter 2

NETWORK SENSING APPLIED 10 IEEE
802.11 COMMUNICATION SYSTEMS

2.1 Introduction to packet capturing: Sniffers
2.2 Getting Raw-Traffic from an IEEE 802.11 scenario
2.3 Sniffer design and implementation

2.4 Importing the sniffer extracted data into a higher-level programming

language: MATLAB

22

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

2.1 INTRODUCTION TO PACKET CAPTURING: SNIFFERS

Sniffers are applications installed in a computer that makes part of
a network to capture information not specifically directed to them. The idea
is to sense the network and monitor transmissions, while capturing data
flowing through the system. Commonly, sniffers are programmed with two
main functions: the first type is designed to obtain the content of
transmissions —telephone conversation, e-mail message -; whereas the
second type analyzes network traffic. Because of their capabilities, user
discretion determines if these programs are used with administrative

purposes or to illegally capture information.

In this particular case, the sniffer was designed to extract real-
traffic from an 802.11 scenario; temporization and other properties of the
PPDUs (PLCP Protocol Data Unit) interchange between nodes in a 802.11
network with BSS or IBSS infrastructure that would be statistically

analyzed later on.

Some sniffers for 802.11 and Bluetooth networks are currently
available in the market as free or commercial software. Here are some

examples of sniffers working on a Linux platform:

» Kismet, is a detector of 802.11 networks that can identify
intrusions. This application analyses traffic 802.11a, 802.11b,
802.11g and 802.11n. The software can be executed from BSD,
MacOS (KIsMAC) and Linux-ARM (available at [20]).

= AirTraf: a 802.11 network analyzer, developed using JAVA, C
and PHP (available at [19]).

» Wireshark: is a Unix based analyzer with ability to work
under MacOS, OpenBSD, BeOS, Solaris and Iris. This
application is oriented towards wired networks (Ethernets) and

802.11. Wireshark supports hcidump files (available at [18]).

23

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

* Hcidump is a Bluetooth packet analyzer that works on the
HCI interface and can be executed from Linux console (available

at [16]).

Some sniffers can work under Windows, if packet-capturing
hardware is installed on the computer. These are some examples of what’s

available on the market:

» Air Magnet: a WLAN monitoring Windows based solution that
analyzes threats and audits regulatory compliance of Wi-Fi users;
the application provides complete visibility of traffic the wireless
airspace. Can work with some commercial network adapters, but

only if using special drivers (available at [17]).

= NetStumbler, is a tool that can monitor the network, as well

as analyze packets in 802.11 networks (available at [4]).

» AirPcap: a hardware-software solution that captures full
802.11 data and offers management and control frames that can

be also viewed using Wireshark (available at: [14]).

* OmniPeek: this hardware-software solution addresses
wireless network monitoring and analysis from the network edge

to the data center (available at [13]).

» FTE4BT, first protocol analyzer and packet sniffer for
Bluetooth v1.2, developed for commercial use. Analyzes data in
real time enabling the user to capture, display, decode, filter and

detect errors at the same time (available at [12]).

Currently, most sniffers working under 802.11 protocol have
common capabilities: packet traffic analysis, ad-hoc network detection
(IBSS, BSS and ESS), monitoring of client stations and access points,
network mapping, troubleshooting networks and decoding WEP (Wired
Equivalent Privacy) encryption. These applications work with network
adapters that possess Broadcom, Intel, Prism2, Orinoco, Atheros or Cisco

chipsets, using Open Source drivers: Linux based solutions; or depending
24

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

on specialized hardware that allows to them perform this operations:
Windows based solutions. Sniffers working under Bluetooth protocol
require specialized hardware to capture air traffic without establishing

prior communications (i.e. FTE4BT, Merlin I and II).

The WLAN sniffers we know today have either been created by
communities of independent programmers and distributed online for free
access, or by companies who develop commercial software. This
applications are targeted to network administrators, software developers
and companies that integrate wireless technology in their products in order
to test them before launching them in the market. Most Windows based
sniffers are expensive and require specialized hardware, this seems to be
the reason why many developers chose to work with free applications

under Linux based platforms.

The sniffer developed for this project allows creation of data packet
capture sessions in real time, as well as displaying packet content in
hexadecimal format and report detailed information of captured MAC

PDUs:

= Packet Length [bytes] (Radiotap Header Length + MAC
Layer PDU Length).

» Captured Length [bytes].

= Radiotap Header Length [bytes].

» Frame Length (MAC Layer PDU Length [bytes]).

= TSFT (Time Synchronization Function timer [usec]).
* Band (2.4 GHz or 5 GHz)

* Modulation Type.

= Bit rate.

= PLCP Preamble Type.

= Contention-Free Period or Contention Period

25

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

= PPDU (PLCP Protocol Data Unit) Duration [usec] (Calculated
by the application)

= Frame type.

* Frame SubType.

= Receiver MAC Address.

* Transmitter MAC Address.
» Fragment Number.

= Sequence Number.

The advantage of developing this sniffer using JAVA is that it can be
executed under any operative system provided with Java Virtual Machine
(JVM) [23], as long as the network’s wireless adapter can be set to monitor
mode’. This packet-capturing application is executed by console under any
Java Software Development Environment, most likely embedded with an
option to store capture sessions as files (.txt 1s a common example).
Capture files can later be loaded and displayed anytime, making possible
to import this data into a higher level programming language® when
desirable. Once the capture data is imported into MATLAB, a reproduction
of the network PPDUs sequences in a Time Diagram will be implanted.
This time diagram shows presence or absence of PPDUs in the air (by way
of determining use or not use of the physical resource, based on the
duration of each PPDU transmitted over the air) during a preset period of

study —capture time-.

Having the capture information imported into a higher level
programming language with the capabilities to develop statistical studies

of the data set, will enable optimal feature selection and friendly

7 We define monitor mode [24] as intercepting packets with no exceptions within an IEEE
802.11 BSS or IBSS domain, with no active participation in sending frames.

8 MATLAB was chosen in this work.

26

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

classification algorithm design and testing. Those ways we will be paving
the way for future work in this Project (as described in section 1.3);
remembering that the idea is to accomplish accurate classification of the
PPDUs sequences as IEEE 802.11 traffic independently of sent data and

physical parameters of transmissions®.

® Such as modulation, bit rate amongst others.

27

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

2.2 GETTING RAW-TRAFFIC FROM AN IEEE 802.11 SCENARIO

This WLAN sniffer was developed under Linux in order to attain
optimal control over the network dispositive in use. Chosen distribution
was Linux Ubuntu Karmic Koala 9.10 with the real-time kernel version
2.6.31-9-rt, choice parameters were stability and support to manage
wireless networks. The wireless adapter in use for the scenario was an
AirForce 54g® 802.11a/b/g PCI Express® Transceiver with a BCM 4311
chipset.

To support and facilitate configuration of the wireless adapter we
used Wireless tools for Linux, a package of Linux with simple text-based
commands. The iwconfig tool allowed us to display and change the
parameters of the network adapter, particularly those specific to the
wireless operation, such as frequency of the WLAN operation channel and
monitor mode settings for the adapter. Management and configuration of
the network adapter were handled with the b43 driver, which provides
reasonably good performance in terms of packet loss and a Monitor Mode
option (available at [9]). Additionally, b43 works with Radiotap Header,
which has become a de facto standard for 802.11 frame injection and

reception.

“The radiotap header format is a mechanism to supply additional
information about frames, from the driver to userspace applications such
as libpcap, and from a userspace application to the driver for transmission.
Designed initially for NetBSD systems by David Young, the radiotap
header format provides more flexibility than the Prism or AVS header
formats and allows the driver developer to specify an arbitrary number of

fields based on a bitmask presence field in the radiotap header”[7].

9 Only when the driver supports this configuration.

28

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

This Radiotap Header will provide us physical information of the
IEEE 802.11 frame, such as modulation, bitrate, PLCP preamble type,
TSF", and frame failure reception from a FCS check, amongst other
utilities. These capabilities are fundamental to reconstruct presence or
absence of data in the air during observation time, and allow us to recreate
PPDU duration from the captured MAC PDU. The recreation will follow

this formula:

PPDU = PLCP HEADER + PLCP PREAMBLE + MPDU

The 802.11 PHY Layer Convergence Procedure (PLCP) transforms
each 802.11 frame (MPDU) that a station wishes to send into a PLCP
protocol data unit (PPDU) that will be transmitted over the air. This
transformation adds different length sub-fields (header and preamble)

depending on the standard’s version (a/b/g/n).

Our WLAN sniffer captures information inside every single MPDU
transmitted over the air into an IEEE 802.11 network, while registering
length (in bytes) and transmission bitrate. In this fashion, we are able to
calculate the duration in time wunits of the MPDU. For future
developments, we need to be able to determine temporal duration of PPDU,
which correspond with the duration of the packet at the air interface. Our
application calculates this PHY duration by adding together the MPDU
time duration, the PLCP HEADER" duration and the PLCP Preamble

duration®™ according to PHY characteristics of this PPDU transmission.

As an example, for the 802.11a version, we find the following

structure in the PPDU:

" Time Synchronization Function Timer, when the first bit of the MPDU arrived at the MAC,
related to the wireless card clock at that instant.

2 Fixed length field.

3 Information provided by the radiotap header.

29

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

[PLCP Header I
[=
RATE | Reserved| LENGTH | Parity | Tail | SERVICE Tail -
4bits | 1bit | 12bits | 1bit | 6bits| 16 bits PSDU 6 bits |20 BIS
T Coded/OFDM | Coded/OFDM |
~, (BPSKr=12) | (RATE is indicated in SIGNAL) |
- | . |
1
PLCP Preamble | SIGNAL DATA
12 Symbols |One OFDM Symbo Vanable Number of OFDM Symbols

Figure 2.1 - IEEE 802.11a PPDU format

Calculations for airtime of the PLCP Header and PLCP Preamble
are reported at the IEEE Standard[1]. These are utilized by our application

to report temporal duration of the PPDU transmission over the air.

For the 802.11b version, we have the following structure, where both
PCLP Header and Preamble are transmitted over the air at a bitrate of 1
Mbps in the long version or at 2 Mbps for the short one as described on[1],

following figures illustrate both long and short preamble cases:

Scrambled Ones

\

SYNC SFD SIGHAL SERVICE LEMGTH CRC 1 Mbis DBPEK
128 bits 16 bits 8 bits 8 bits 16 bits 16 bits
PLCP Preamble PLCP Header FSOU
144 bits 48 bits =
182 us -
1 DBFSK
FFOU 2 DAPsK

5.5ar 11 Mb's

Figure 2.2 - TEEE 802.11b Long-Preamble PPDU fortmat

30

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Scrambled Zeros Backward
i SFD
shortSYNC shortSFD
56 bits 18 bits
DBPSK
SIGHAL SERVICE LEMGTH CRC
8 bits & bits 16 bits 18 hits
/ 2 Mhis
Short PLCP Preamble Short PLCP Header PSDU
72 bits at 1 Mbf's 48 bits at 2 Mb's Variable at 2, 5.5, or 11 Mbis
--;___“‘-“‘- 86 ps -
PPOU

Figure 2.3 - IEEE 802.11b Short-Preamble PPDU format

For 802.11¢g versions, PPDU structure supports three distinct combinations

of PLCP Preamble and Header as described on [1]:

. The first is the long preamble and header based on 802.11b

with redefinition of reserved bits defined therein. This

PPDU

provides interoperability with 802.11b STAs when using the 1, 2,
5.5, and 11 Mb/s data rates; the optional DSSS-OFDM modulation at
all OFDM rates; and the optional ERP-PBCC modulation at all ERP-

PBCC rates.
OFDM OFDM
SY'!C - _ Sync Signal OFDM O_FDM
(128 bits — SFD Signal Service Length CRC L Field Data Signal
Scrambled (16 bits) (8 bits) (8 bits) (16 bits) | (16 b its) s‘ n?:“g :4“35, Svmpals | Extension
Zeros) Bpey " ym (6 us)
DBPSK DBPSK OFDM
Modulation Modulation Modulation
F'rzla_r(ipble PLCP Header PSDU
(144 bits) (48 bits) (Data Modulation)
PPDU

Figure 2.4 - TEEE 802.11g Long-Preamble PPDU format (DSSS-OFDM)

31

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

. The second is the short preamble and header based on

802.11b (where it is optional). The short preamble supports the rates
2, 5.5, and 11 Mb/s as well as DSSS-OFDM and ERP-PBCC.

OFDM

OFDM

SYNC SFD o Sianal | OFDM OFDM
(56 bits — | (16 bits — | Signal | Service L:“n" I_'_";: Data Signal
Scrambled | Reversed | (8bits) | (8bits) | (16bits) | (16bits) | ¥ c_g M'"s] Symbals | EX=nSion

Ones) SFD) Bps) (& ps)

DBPSK DaPSK OFDM
Modulation Modulation Modulation
Pr';;;':”e PLCP Header PSDU
(72 bits) (48 bits) (Data Modulation)

PPDU

Figure 2.5 - IEEE 802.11g Short-Preamble PPDU format DSSS-OFDM

. The third is the ERP-OFDM preamble and header based on
802.11a (Figure 2.1). For the ERP-OFDM modes, the DATA field
that contains the SERVICE field, the PSDU, the TAIL bits, and the

PAD bits shall follow.

32

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

2.3 SNIFFER DESIGN AND IMPLEMENTATION

The sniffer developed in this work, allowed implementing network
sensing, 1.e. capturing packets in real time. By choosing JAVA as its
programming language, the application inherited the ability to be executed

in any operative system, as well as a solid troubleshooting performance.

To achieve support for 802.11 packet capturing, the jpcap library
was utilized'* (available at [6]). This library contains classes written in JNI
(Java Native Interface) to wrap capture functionalities of the common use
libpcap library (available at [16]). For this reason, libpcap must be
installed previously in the chosen operative system for jpcap to run. Most
Linux distributions pre-install this library. On the other hand, the
windows based version (winpcap) enables the sniffer to run also under this

platform, but with the limitation of the monitor mode implementation.

Our sniffer serves three main functions: real time packet capturing,
enable file capture saving, and packet content visualization. A detailed

description of each function follows:

" Capture sessions can be created at any time and are executed
in real time. Each session will display a list of all captured packets

(refer to figure 2.6) that can be stored as a file.

. Any capture session saved as .txt files can be loaded and its
data imported into MATLAB, by way of a .m file, explained in

section 2.4.

] Packet content can be visualized in hexadecimal format.

1%« Java library for capturing and sending network packets” designed by Keita Fujii as an
open source library and licensed under GNU LGPL, this resource is available at
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html.

33

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Following figure shows an example of a real

developed sniffer:

capture made by

@No

| Sniffer_Capture_Example

MAC oddress:@:16:d3:93:122:15d:
10 wmaster@inull}
data : |IEEESBZ_11{288Z.11)

in
MAC addressi8:1ai?3i2fiZbIi57:
2:

IEEESE2_11_RADIO{382 .11
MAC qddressi@8i1ai?2i2fi2bis7:

I<H 1{USE bus number 1}
USE_L IMUX{USE with Lirux header)
MAC qddres=:i@:i8:8:8:0:8;

4 2{USE bus number 2}

USE_L IMUX{USE with Linux header)
MAC oddress:68:0:8:6:8:@:

S: angiPseudo—device that captures on all
datalink: LINUZ_SLL{L irux cooked)}

MAC qddres=:i@:i8:8:8:0:8:

B lofnull

datalink: EM18ME{Ethernst)

MAC oddress:68:0:8:6:8:@:
address:/127.8.8.1 /255.0.0.8 null

plus radiotap header)

interfaces}

Frame Length
TSF

Fiate

Eand

Modulation
Freomble
Duration

Feriod

Frame Tupe

Frame Subtype
Receiwver Address
Transnitisy, Address
Fragment Humber
Sequence MHumber

FacketHumber
Length

Caoptured Length
FadioTapHeaderLength
Frame Length

TSF

Fiate

EBand

Modulation
Freomble
Duration

Feriod

Frame Tupe

Frame Subtype
Feceivar Address

address: /B0 IBIRIRIE] SFFffoffireffffeffffiffrfaffifaffffaffff rull
FacketHumber 1

Length 15376

Caoptured Length 1576

Fad i oTapHeaderLength 22 bytes

1544.8 bytes

F164819383 usec

11.8 Mbps

2 GHz Spectrum

Code Complementary Keging
Short

1219 uzec
Contention
DATA

Data

[oa, 12, de,
[oa, 8d, =d,
a

45

Period

ds, ff, d9]
ab, 79, 65]

2

46

46

32 bytes

14.8 bytes
F164828612 usec
11.8 Mbps

2 GHz Spectrum
Code Complementary Keging
Short

186 usec

Contention Period
COMTROL

ACK

[e@, 8d, ed, ab, 79, 65]

Figure 2.6 - Sniffer capture example

34

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

2.4 IMPORTING THE SNIFFER EXTRACTED DATA INTO A HIGHER-LEVEL

PROGRAMMING LANGUAGE: MATLAB

The resulting capture files in .txt format, will be used as an input for
a MATLAB script® to import data collected by the sniffer in its capture
session and generate a Time Diagram (using as input PPDU duration and
PPDU time of arrival) that recreates the behavior of the medium in terms

of presence/absence of PPDU over the air.

The Time Diagram was designed to be transparent to the
transmitted data, displaying only PPDU activity without reporting any
PHY parameters or data over the air. On the ordinate axis, a “1” value is
shown at any microseconds of the capture session when a PPDU was

detected in the air, and a “0” value whenever no PPDU was detected.

Regarding the temporal axis, we have a microsecond resolution in a
domain that extends from the moment the first PPDU enters the wireless

medium, through the moment when the last PPDU exits it.

This Time Diagram recreates the output provided by the energy
detector of our AIR-AWARE module. The following two figures represent
two distinct capture sessions: the first reports a wireless medium with no
traffic and the second depicts a PPDU interchange between a station and

an Access Point (Frame types are Data and Acknowledgement).

The information provided by the sniffer’s capture afforded to verify
that periodic packets in figure 2.7 are Beacon Frames, while in figure 2.8

we found a DATA-ACK communication procedure:

> MTD.m see code on section 7.2

35

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Time Diagram

051

Presence/Absence of a Packet in area

T

T T T T T

4 5 6 7 8 9

time [usec] x10°

Figure 2.7 - Time Diagram with Beacon Frames

Time Diagram

Presence/Absence of a Packet in area

1
1000

| |
1500 2000 2500
time [usec]

Figure 2.8 - Time Diagram with Data-Ack Procedure

The Time Diagram was designed in a way that there is no further

knowledge as to what kind of information the PPDU is carrying over the

wireless medium, later on an optimal feature selection to this pattern is

rendered and a classification algorithm must concludes that the PPDUs in

fact represent IEEE 802.11 traffic®.

16 As described in extent on section 1.4.

36

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Chapter 3

IEFE 802.11 REAL TRAFFIC ANALYSIS

3.1 Strategy

3.2 Features Selection

3.3 Features characteristics for multiple captures
3.3.1 PPDUs Duration Feature

3.3.2 SIF'S Feature
3.3.8 Beacon Periodicity Feature

3.4 Fitting SIF'S feature to a Probability Density Function using

experimental data.

37

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.1 STRATEGY

Once IEEE 802.11 real-traffic is effectively acquired, it’s time to
analyze these networks PPDUs interchange. When we set off with this
project to recognize each technology operating on the 2.4GHz ISM band
based on temporization of different networks packet interchange, we took
as granted the presence of characteristic behavior for each one of them: an

accurate differentiation parameter.

The goal of the analysis we develop on this section is to determine
different parameters based on MAC sublayer communication procedures,
which identify unequivocally a packet interchange sequence as part of the
IEEE 802.11 traffic when true. The analysis will utilize different captures
of the implemented sniffer (Chapter 2), to test how solid are the chosen
parameters’’ in realistic situations. Such parameters will then become our

IEEE 802.11 networks features.

These features selection would be made using clean patterns (only
with IEEE 802.11 traffic over the air), being careful that packets are not
lost to interference while studying the “Sequence Number” frame subfield
for each intercepted PPDU during capture sessions. Once the features are
selected, will be then evaluated if the presence of different technologies

could affect theirs trends [26].

Later on (in Chapter 4), a Bluetooth network packet sequence will be
simulated based on specifications reported at [27], and the algorithms used
to extract features from 802.11 PPDUs sequences, will be then applied to
this Bluetooth packet sequence; this way, will be, at least, proved the
differentiation Wi-Fi vs. Bluetooth based on selected features [26].

Y The idea is to encounter the same behavior for each parameter at multiple measurements in the
clean scenario described in detail on section 1.5.

38

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.2 FEATURES SELECTION

In order to select solid features from captures in different scenarios,
we need to determine standard fixed parameters that identify Wi-Fi
interchange type packets unequivocally. In other words, we need to find a
set of rules —related to temporization of presence/absence of PPDUs over

the air- that repeatedly appears in an IEEE 802.11 network.

The first relevant parameter that could help discriminate among
other technologies is the interval of possible PPDU duration for each
version of IEEE 802.11 traffic. Minimum and maximum values of these
parameters for versions 802.11b y 802.11g, as well as a description of

physical parameters for each value are reported on Figure 3.1.

Table 3-1 - 802.11 PPDUs Duration (critical values)

Min PPDU Duration ps

Max PPDU Duration ps

106 ps 18624 us
802.11b @ 11 Mbps with Short Preamble @ 1 Mbps with Long Preamble
Frame Subtype: ACK, RTS, CTS Frame Subtype: DATA
MTU™ = 2304 bytes and
29 ps 18624 ps
@ 54 Mbps using ERP-OFDM @ 1 Mbps with Long Preamble
802.11g PPDU

Frame Subtype: ACK, RTS, CTS

Frame Subtype: DATA

MTU’ = 2304 bytes and
Fragmentation Threshold
disabled.

8 Maximum Transfer Unit is the maximum payload the link can handle, for IEEE 802.11 is
2304 bytes long (frame payload size before encryption). However, most WLAN drivers use the
Ethernet standard of 1500 bytes.

39

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

The next proposed parameter, is focused on PPDU interchange
temporization: the time interval between frames, known as Interframe
Space (IFS). Five different IFS spaces are defined to provide priority levels

for access to the wireless media:
a) SIF'S: Short Interframe Space.
b) PIFS: PCF Interframe Space.
c) DIF'S: DCF Interframe Space
d) ATFS: Arbitration Interframe Space (Used by the QoS facility)
e) EIFS: Extended Interframe Space

Different IFSs shall be independent of STA bit rate. The IFS timings
are defined as time gaps on the medium, and all of them except AIFS are
fixed (even in multirate-capable PHYs). The IFS values are determined

from attributes specified by the physical layer in each of the versions
(a/b/g/n).

=———[[]]]
Immediate access when AIFS[i]
Medium is free >= DIFS/AIFS[i] : g i / / / / /

DIFS
- Contention Window
DIFS/AIFS PIFS [=
| SIFS T 1T 77
i Backoff Slots /
Busy Medium <)—1>t , Backol Next Frame
LI
Slot time
Defer Access Select Slot and Decrement Backoff as long
== as medium is idle

Figure 3.1 - Illustration of Multiple IFSs

Of all existing IFS types, SIFS was chosen as the reference. This
interval is both shortest and most likely to occur in a scenario with
medium to high traffic, because it shall be used prior to transmission of an

ACK frame, a CTS frame, the second or subsequent MAC PDU of a

40

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

fragment burst, and by a STA responding to any polling by the PCF. The
SIFS may also be used by a Point Coordinator (PC) for any types of frames
during the Contention Free Period (CFP) [1].

The SIF'S is the time from the end of the last symbol of the previous
frame to the beginning of the first symbol of the preamble of the
subsequent frame as seen at the air interface. An IEEE 802.11 network
shall not allow the space between frames that are defined to be separated
by a SIFS time, to vary from the nominal SIFS value by more than £10% of

aSlotTime * for the version in use.

SIFS has a nominal value of 10 ps for ISM Sub Band 2.4GHz
operating versions (b/g/n). The following figure illustrates the transmission
of a multiple-fragment MSDU (MAC Service Data Unit) from one station to
the Access Point using the SIFS:

Fragment Burst DIFS
M ¥ PIFS
SIFS SIFS SIFS SIFS SIFS élF N
Fragment 0 I‘—’ ‘_.'WF_. HWF—D <—§| {EJacKoﬁ-VYindow
Source
ACK 0 ACK1 ACK 2
Destination

Figure 3.2 - TX of Multiple MSDU's fragments using SIFS

Every time a station needs the channel to transmit to or receive from
the access point a quantity of data superior to the Maximum Transfer Unit
MTU or the Fragmentation Threshold, the illustrated procedure will occur.
In addition, whenever a STA or AP send a DATA frame will receive back
an ACK frame with a SIFS in the middle. This communication procedures

will enable us to identify IEEE 802.11 traffic, finding absence of energy in

% Has a 20 ps value for 802.11b version and 9 us value for OFDM Preamble 802.11g version

41

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

consecutive gaps of 10 us. Experiments to observe this parameter’s

behavior across multiple captures are available on section 3.3.2.

For this feature extraction, we must individuate from IEEE 802.11
acquired traffic gaps those corresponding with SIFS interval and discard
others. To extract the gap on DATA-ACK procedures, the most common,
the propose criteria is an algorithm (See Appendix, FeatureExtraction.m)
that automatically extracts the SIFS gap. Estimating its statistical
behavior, SIFS could be well differentiated from a non-SIFS when the
extraction is only rendered in the case that two consecutive PPDUs,

durations were such that: 0.65*PPDU;in > PPDUi+1.

The factor has been justified thinking at the difference between the
length of an ACK and DATA frames; this difference in bytes could go from
16 to 2300. Aditionally, we’ll only choose values shorter than 625 pus
(Bluetooth time-slot) to build the statistic of this parameter, excluding
bigger gaps that would neither correspond to the Data-Ack 802.11
procedure nor a Bluetooth® silence gap between a PHY packet and its
ACK. This way we are also discarding uncorrelated PHY packets (long
silence gap between them) that fit the above-mentioned duration condition.

This feature’s will be characterized analyzed on section 3.3.2.

The last parameter was selected thinking about very low-traffic
scenarios (where the DATA-ACK procedure is uncommon) or even no traffic
(having just an Access Point sending Beacon Frames). In these cases, we
could take advantage of the periodicity of Beacon Frames, since every
IEEE 802.11 network has an Access Point (Basic Service Set case) or
multiple stations (Independent Basic Service Set case) sending this kind of
frames regularly with network’s information and PHY parameters. The

beginning of two Beacon Frames is separated by a Beacon Interval, defined

20 Thinking always in a posteriori Wi-Fi vs. Bluetooth classification.

42

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

in the standard as a multiple positive integer of the Time Unit (TU = 1024
us), which by default is fixed at every Access Point to 100:

Common Beacon Interval = 100%1024 us = 102400 us

Because we have no certainty that this value will always be equal to
the Beacon Interval assumption and our energy detector is unable to read
its related data inside Beacon Frames, an algorithm is proposed (See

Appendix, FeatureExtraction.m code) to detect this type of frames.

Designing the algorithm: For each 802.11 network, the length —in
bytes- for this type of frames is fixed and the transmission rate is the
lowest possible of the Basic Rate Set (BRS). PPDUs with the same
Temporal Duration are grouped for captures approximately two (2)
seconds™ long. The proposed algorithm generates a vector [x] for each
group of PPDUs with the same Duration, and each vector’s cell stores
iter-arrival time between PPDUith and the PPDUith+1. Then, the median
for the vector is calculated and the percentage of consecutive PPDUs for
each group with an inter-arrival time of 100 pus over and under the median

calculated is determined®.

To calculate percentage PPDUs under this condition, we use the
median instead of the average to build a solid algorithm that resists the
phenomenon of packet loss. In the uncommon cases of packet loss or no
detection, the inter-arrival time between two PPDUs gets duplicated; these
values will go to the extreme of vector [x] and will be discarded when

setting the threshold of expected inter-arrival time:

21 With the default beacon interval, we will be able to capture around 20.

22 We called this parameter Expected Interarrival Time, keeping in mind that 100 us is three
orders of magnitude under the Beacon Interval default value.

43

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

[1'1’,/2 (‘1) -100 us < Expected Intearrival Time < ,’1'1/2 (I) " +100 us

If the majority of PPDUs in a group meet the condition, we can safely
conclude that they correspond to Beacon Frames. In section 3.3.3 we report

the results of the algorithm tests.

44

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.3 FEATURES CHARACTERISTICS FOR MULTIPLE CAPTURES

In this section, we report the behaviors of the selected features at
different network scenarios. First, a snapshot of our experimental setup:
The tests were run in the ACTS laboratory, situated on the 224 floor of the
Information and Communication department (InfoCom department), in the
School of Engineering of the University of Rome “La Sapienza”. To run the
tests we used two (2) Access Points (APs), three (3) Stations (STAs) and one
(1) Sniffer Station (SS) described on Chapter 2. Following is a description

of each component:

= AP1: Cisco Aironet 1200 Series (802.11 b) set at channel 8 for

all tests.

. AP2: U.S. Robotics USR808054 (802.11b/g) set at channel 1

for all tests.

. STA1l: Sony VAIO VGN SZ-450 N/C with INTEL PRO
WIRELESS 3945ABG adapter.

] STA2: HP Pavilion dv6000 Series with Broadcom BCM 4311
802.11 a/b/g wireless adapter.

. STA3: Asus eeepc 1201 with Atheros AR9285 wireless
adapter.

" SS: HP pavilion dv2000 Series with AirForce 54g 802.11 a/b/g

PCI Express, with a Broadcom 4311 chipset.

For every test, AP1 was situated at 5 meters from the table where
all STAs were located, while AP2 was on STAs table at 50 centimeters from
them. STAs and SS where close to each other: 10 centimeters between each
of them. During test runs, AP1 was permanently set to channel eight (8)
without presence of interference entities in that channel and AP2 was set

to channel 1.

45

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.3.1 PPDUS DURATION FEATURE
To study the behavior of this feature, we run tests using AP1 (Cisco
Aironet 1200 Series) in two scenarios, either with medium to high traffic
or with no traffic. A thousand (1000) packets were captured in each run.

Please refer to these histograms to illustrate our results:

PPDU Duration Histogram with High Traffic PPDU Duration Histogram with Medium Traffic

SM H H H H H H 5w T T T T T T
9 RS S DUURU N OO SO 00| b 1

P .

§300-. A s ST I N o R 4
8 200 b 8 200 |]
100¢f--- ...i.......ni .. JOOF---1--rmmmmrm e e -

0 “i._ ; ; il I ‘ . 0 b i S I

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
PPDU Duration [usec] PPDU Duration [usec]

Figure 3.3 Figure 3.4
PPDU Duration Histogram with No-Traffic PPDU Duration Histogram with No-Traffic
20, T T T T T T 20 T T T T T T
A S] e PR EEEERRRE P A S L T PR R -
N N
g g
% 10 .. % 10 ... =
¢ &
o SR e e e e e ey CEEPPP PR EPPPEPEEEPRPErr B e e e b ey E e T e e e E e P T TP EPTTTPPEEPTTTs
0 : i i i ; : 0 ; ; i i i ;
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
PPDU Duration [usec] PPDU Duration [usec]

Figure 3.5 Figure 3.6

Figure 3.3 displays results of a test in which 1000 packets were

captured in 1.8 seconds in a high traffic scenario; with STAS3 processing a

video call and STA1 downloading two (2) files through AP1.

Another 1000 packets were capture in 2 seconds at a medium traffic
scenario with STA2 downloading two files through AP1, as displayed on
figure 3.4. Only participating STAs were associated to the network during

these trials.
46

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Figures 3.5 and 3.6 reflect the results inside a no-traffic scenario.
The first capture rendered 26 packets in 0.9 seconds, while the second
resulted in 47 packets in 1.8 seconds. Here, we had three (3) APs sending
beacon frames with no STAs associated to them. Both AP2 and the two
interfering APs are set to channel 1, with the Sniffer Station (SS)

amongst their coverage range.

The capture file allowed us to verify that all APs had set the same
Beacon Interval; therefore, in a situation with no packet loss we should
expect pretty much the same number of PPDUs to be captured from each
AP. However, a look at the histogram shows us differently; while same
AP’s beacon frames have exactly the same duration, the peak in the
middle represents captures of AP2’s frames (the maximum value in both
graphics). We were able to reach this conclusion because AP2 was
situated at 50 centimeters and we had high signal power level at the SS
receiver. Oppositely, for the interfering APs, we verified lower signal
power levels at the SS receiver, particularly on the one that sends longer
beacon frames. Here we see the representation of the packet loss

phenomenon.

Regarding the duration value in the four (4) captures, we are able to
confirm that every sample falls within the range defined at figure 3.1 for
the version 802.11b [106 us, 18624 us]. Lastly, figures 3.4 and 3.5 display
concentration of PPDU Duration values around 200 us (corresponding to
ACK frames) and at 1200 ps (corresponding Data frames), from this we
infer that the Data-ACK procedure is very common in medium to high

traffic scenarios.

47

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.3.2 SIFS FEATURE
This feature was selected to fit medium to high traffic scenarios
where the Data-ACK procedure is very common, as showed in precedent
section. To test this feature, we run six (6) captures of 1000 packets, in
three (3) different scenarios. Each scenario was enacted twice, in different
days. The following graphics display our results regarding this feature
behavior over the six captures; each row represents the behavior for

exactly the same scenario:

SIFS Histogram

SIFS Histogram

388

Freguency

Freguency
NN
8 &

0 : :
o 5 10 15 20
IFS [usec]

0 : :
o 5 10 15 20
IFS [usec]

SIFS Histogram SIFS Histogram

300 T T 300 M - v
250} ---w--eo- O TR SO 250} ---------- frnmmnenns heemneennes R,
e B 3 200--------- Tt ISR foeeemmmnaed]
g 150} --------- R e § 150} ----------ioeeeeeo

] Q

VNP7 WU S W ——— & 100f---------- R SRR R
7] — SN F— I 501---------- LENRRN SR R

0 ! ! 0 : :

o 5 10 15 20 o 5 10 15 20
IFS [usec] IFS [usec]

SIFS Histogram

SIFS Histogram
350 T .

300
250
200
150

Freguency

o 5 10 15 20
IFS [usec]

o 5 10 15 20
IFS [usec]

48

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

The AP1 (Cisco Aironet 1200 Series) was used in all tests. Figures
3.7 and 3.8 correspond to different dates in which AP1 was associated to
STA1 and STA3. STA1 was processing a video call while downloading one
file, and STA3 was surfing the web.

The results on figures 3.9 and 3.10 represent a scenario in which
STA1, STA2 and STAS3 were associated to AP1. STA1 was downloading
two (2) files, while STA2 and STA3 were on a video call together. STA3

was also downloading one (1) file at the time.

Finally, results reported on graphics 3.11 and 3.12 reflect STA2

associated to AP1 while downloading one (1) file.

We noted that test runs performed in analogue scenarios reported
very similar results. Also, all trials were run over a 1000 packet capture
and, for each case, 40% of the PPDUs sequence’s gaps were reported as
SIFS. Therefore, made assumption that this parameter will be very
common at medium or high traffic scenarios proved to be right. Following

Table 3-2 illustrates this fact:

Table 3-2 — Results of SIFS Feature extraction

Capture Silence Gaps Gaps reported as SIFS by % Of total | Non-SIFS gaps
the proposed algorithm gaps reported as
reported as SIF'S by the
SIFS algorithm

First 999 475 47.55% 2
Second 999 453 45.34% 2
Third 999 481 48.14% 5
Fourth 999 471 47.14% 3
Fifth 999 451 45.14% 4
Sixth 999 452 45.23% 6

49

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Additionally, the fact that in all tests ran this parameter takes
mostly the value of 10 us (as defined at [1]) was confirmed, and so was the
deviation of this value, always within the range of tolerance +10% of
aSlotTime (2 ps for 802.11b version), plus 1 pus of MAC Processing that
could be induced by the Sniffer Station (SS). We also observe more
deviation of this nominal value when a specific STA (STA 3) is associated

to the AP, but still within the expected behavior.

It could also be noted in Table 3-2 that some gaps reported as SIFS
by the algorithm are not really SIFS. Looking theirs measured value, is
still shorter than 625 pus Bluetooth time-slot so its reported, but very far
from 10 ps expected, and consequently are not visible in histograms -scale
issue-. As reported on [26], this will not be a big problem at Wi-Fi vs.
Bluetooth classification because theirs low frequency of occurrence

(inferior to 1% most cases).

As a feature, the SIFS value is evidently solid respect interference of
other technologies operating in the ISM band. It’s almost impossible to
find regularly a similar distribution of a parameter, with this same
frequency within the capture and with this small deviation from its
expected value in other technologies or interference entities. Anyhow, at
chapter 4, a Bluetooth communication will be simulated, and this same
algorithm will be applied to that packet sequence; that way we will really
know if this feature helps to differentiate at least Bluetooth vs. Wi-Fi

networks.

50

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.3.3 BEACON PERIODICITY FEATURE
This feature was selected with low or no traffic scenarios in mind,
where SIFS are uncommon and not definitive to conclude whether or not
traffic over the air corresponds to IEEE 802.11. During the 4 trials —with
captures of approximately 2 seconds- the Sniffer Station (SS) was sensing
on Wi-Fi channel 1, in which AP1 and two interfering APs were operating

with no stations associated to them —sending just beacon frames-.

Along the four (4) tests (A, B, C, D), our SS receiver was at AP2
signal power level of -64 dBm, and interfering APs with ID “WiFiArea”
and “NETGEAR”, with a signal power lever at SS receiver of -84 dBm and
-79 dBm, respectively. In addition, was calculated the percentage of same
length PPDUs (all of them beacon frames, in this case) with a “fixed””

inter-arrival time, as described by the end of section 3.2.

%o of same duration PPDUS with a "fixed" Inter Arrival Time

r - US Robotics Beacon Frames (AP2) [Signal Power Level = -64 dBm] B
- Wi-Fi Area Beacon Frames [Signal Power Level = -84 dBm]

r \:I Netgear Beacons [Signal Power Level = -79 dBm] m

- Maximum value for a Non-Beacon Frame (AP1 high-traffic) [Signal Power Level = -65 dBm]

100

80

%

60

40

20

B C D
Test Number

Figure 3.13 - Beacon Periodicity Feature

2 Within an Expected Inter-Arrival time range. It has a tolerance +100 ps respect to the
median of inter-arrival times of all grouped same length PPDUs

51

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Figure 3.13 shows how AP2 with the higher signal power level at the
(SS) receiver presented 100% of PPDUs inter-arrival times within range
for 3 out of 4 tests. During the last test, two (2) packet losses were
registered. We are also able to observe that a decline in signal power level
at the SS receiver makes more frequent the reception of PPDUs (beacon
frames for this case) with inter-arrival times outside of expected range

(packet loss will explain this behavior).

Finally, to evaluate the solidity of this feature, the same algorithm
was also applied to four (4) captures (see red bar on figure 3.13) of 1000
packets used in the test of SIFS’ feature behavior (through AP1). The idea
was to study its behavior when applied to non-periodical PPDU’s
sequences without pre-established inter-arrival time. To accomplish this,
we grouped all same length PPDUs in four (4) captures (A,B,C,D also) on
a high traffic scenario —from the preceding section- and calculated the
Expected Inter-Arrival Time range for each group. The last step was to
calculate the percentage of packets within the tolerance range for each
group —except beacon frames group of AP1- and report on figure 3.13 the

“maximum percentage value” at any group for each of the four (4) tests (A,
B, C, D red bar).

We were able to conclude that this feature is in capacity to reveal
and discriminate a certain periodicity in presence of packets of the same
duration with good precision® and, therefore, is adequate to detect IEEE
802.11 beacon frames. We can responsibly assume that this feature is not
sufficient per se, because it doesn’t enable differentiation between this
traffic and other technologies with fixed length packets and fixed inter-
arrival times or an interfering entity with certain periodicity. This feature

will then be useful in combination with others like PPDU Duration to

% As seen in figure 3.13, it will be necessary to detect (receive) the majority of packets in a
measurement; otherwise, the performance of this feature could be compromised.

52

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

achieve accuracy, or even with other technologies features that will allow

us to make a more accurate conclusion.

53

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3.4 FITTING SIFS FEATURE TO A PROBABILITY DENSITY FUNCTION USING
EXPERIMENTAL DATA

The objective of this section is to fit to a common probability density
function (p.d.f.) the most solid and characteristic feature founded on
experiments. Test here are Gaussian based because its simplicity; and
particularly for the SIFS feature, measurements seems to fit very well to

this model.

The normal distribution or Gaussian distribution is a continuous
probability distribution that describes data that cluster around the mean.
The simplest case of a normal distribution is known as the standard

normal distribution, described by the probability density function:

Equation 1 - Standard Normal Distribution PDF

1 =
62

P(x) =

N

The constant 1/(¥(2 7)) in this expression ensures that the total area
under the curve @(x) 1s equal to one, and 1/2 in the exponent makes the
“width” of the curve (measured as half of the distance between the
inflection points of the curve) also equal to one. It is far more common to
describe a normal distribution by its mean p and its standard deviation o.
Changing to these new parameters allows us to rewrite the probability

density function in a convenient standard form:
Equation 2 - Gaussian PDF in a convenient standard form
(=)’

1 :
f@)=——e

2no?

54

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Notice that for a standard normal distribution, mean p=0 and
variance 0 >=1. The last part of the equation above shows that any other
normal distribution can be regarded as a version of the standard normal
distribution that has been stretched horizontally by a factor ¢ and then
translated rightward by a distance p. Thus, p specifies the position of the

bell curve’s central peak, and ¢ specifies the “width” of the bell curve.

To do the fitting, we will refer to the six (6) experiments detailed on
section 3.3.2. The data sets used to generate all of the histograms reported
on figures 3.7 through 3.12, will be now analyzed statistically and its mean
and standard deviation would be calculated. This both parameters would
be used to define a Gaussian pdf, which would be superimposed to a
normalized version of the previously mentioned histograms (as showed on

figures 3.14 through 3.19).

Regarding the six (6) data sets, we define as x,ithe i-th measurement
of the SIFS value (i-th cell of the data set vector) and as N the number of
measurements of this parameter made on the six experiments (length of

the data set vector). This way we estimate the Gaussian model mean as:

Equation 3 - Calculation of the mean from the histogram

and finally we estimate the model variance as:

Equation 4 - Calculation of the variance from the histogram
A 1 N (A 2
o' =— E Xi~ M)
N i=1

Following, we present the normalized histograms from section 3.3.2,

with the superposition the proposed Gaussian model for each case:

55

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

1
o = SIFS Normalized Histogram e SIFS Normalized Histogram
0.9}~ ——F d PDF f--eeeeq 0.9} — d PDF |-
Py, I— 0.8 ;
0.7) 0.7]
0.6} 0.6|
2 —/-‘ =)
§ 0.5 § 0.5 /
[/ Y, SRR S——— / & VR So— 0. 4=~ / \
0.3}~ 0.3}
0.2 !/ \ 0.2 \
0.1 \ 0.1 //
"6 8 10 12 14 "6 8 10 12 14
SIFS Value [usec] SIFS Value [usec]
Figure 3.14 Figure 3.15
1 1
e SIFS Normalized Histogram w— SIFS Normalized Histogram
0.9} —— Estimated an PDF |- 0.9~ e d PDF |-
0.8 0.8} ;
0.7} 0.7
0.6| 0.6t~
& B
§ 0.5 _/\\ E 0.5(-- L. \
0.4 / 0.4b------
0.3| A 0.3t~ \
0.2 1 0.2 /
\
0.1 0.1 I/
"6 8 10 12 14 "6 8 10 12 14
SIFS Value [psec] SIFS Value [psec]
Figure 3.16 Figure 3.17
1 1
w—— SIFS Normalized Histogram = SIFS Normalized Histogram
0.9t----{ —— Estir d Gaussian PDF |- -~ 0.9}----- —— Esti d Gaussian PDF |-
0.8t~ L S S
/% I | WAL H 0.7 --f3
0.6 X : 0.6 [\
5 [/ § 0.5 =
0.4| : 0.4
0.3f-----=n- 0.3| -}
0.2}-----==xx- ! -- 5 0.2}-- - / - \ --------------------
0.1 : 0.1 -1
” V NE) / \N|
6 8 10 12 14 6 8 10 12 14
SIFS Value [usec] SIFS Value [usec]
Figure 3.18 Figure 3.19

In Table 3-3, obtained results after applying Equation 3 and Equation 4 to

the data sets generated by the six captures are:

Table 3-3 — Estimated Mean and Variance for Gaussian model

56

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Analyzing results, in a general way, we propose to assume a
Gaussian Probability Density Function with Mean 10 us and Variance 0.5
us? to model an extraction of the SIFS Feature if needed. The following
figures display the above proposed p.d.f., superimposed to the resulting
histograms for each of the six (6) experiments. This way, we can visually

confirm that the feature follows this feature's trend adequately:

SIFS Histogram & SIFS Feature Proposed P.D.F.

I SIFS Histogram :
[| —— Proposed PDF [--~-"1

SIFS Histogram & SIFS Feature Proposed P.D.F.
1

6 8 10 12 14
IFS [usec]

6 8 10 12 14
IFS [usec]

Il SIFS Histogram | :
0.9 —— Proposed PDF |-+

...

Il SIFS Histogram :
0.9p------=---- i —ProposedPDF

Frequency
S
&

6 8 10 12 14
IFS [usec]

|| I szFs Histogram . :
: — Proposed PDF 5""""""-"%

|| B SIFs Histogram |}
i ——— Proposed PDF |}

Freguency

6 10 12 14
IFS [usec]

6 10 12 14
IFS [usec]

57

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Chapter 4

TESTING SELECTED FEATURES IN A
MULTI-NETWORK ENVIRONMENT

4.1 Analyzing SIF'S feature extraction inside a Bluetooth

Network communication pattern

4.2 Future work

58

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

4.1 ANALYZING SIFS FEATURE EXTRACTION INSIDE A BLUETOOTH
NETWORK COMMUNICATION PATTERN

The experiments in Chapter 3 proved that the SIFS feature was
particularly useful for Wi-Fi networks identification. Data from across all
PPDUs captures analyzed render results practically identical for this
feature’s measurement. Nonetheless, no clues have been collected about
this feature’s behavior when extracted from a pattern generated by others

technologies networks communication.

Evidently, it is necessary to at least prove that extraction of the
feature in the above-mentioned patterns will render clearly different
results, in respect to those reported after extraction in a Wi-Fi network
pattern. By doing this, we could securely state that this feature could allow

differentiating this set of technologies.

As a first case study, it was decided to extract this feature from a
Bluetooth network packet interchange; because of the wide diffusion of this
network type. To do such extraction, the same algorithm utilized for
measurements in section 3.3.2 will be applied —where extraction will only

be rendered in case that two consecutive PPDUs duration were such that:
0.65* PPDUith > PPDUith+1-.

To generate the Bluetooth packet sequence as extracted by the
energy detector, simulated Bluetooth PHY packets were recreated using
MATLAB. The reference for this simulation is the IEEE Standard 802.15.1
— 2002 [27], 1.e. bitrate of 1 Mbit/s. Piconets of two devices, one master and
one slave, in connection state (one master and one slave) were considered.
The two devices send their packets alternately: one device (the master, for
example) sends its data packets, and for every received packet, the other
device (the slave) sends back an acknowledgement —as reported on [27]-.

Data packets sent by the master can occupy 1, 3 or 5 time slots (where the

59

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

time slot is 625 us), according to their length, whereas acknowledgement

packets (NULL packets, with a fixed length of 126 bits) occupy 1 time slot.

Regarding to the communication Scenario, the length of the

simulated packets was modeled as follows:

= 80% Data Packets sent by the master will occupy 1 Time Slot

» 15% Data Packets sent by the master will occupy 3 Time Slots

» 5% Data Packets occupy sent by the master will occupy 5 Time

Slots

Additionally, 70 % of the data packets have the maximum possible
duration that is fixed by the protocol to 366 us, as showed in Figure 4.1.

| | I
} TX slot { RX slot ! TX slot
| | |
I hop g(2m) I hop g(2m+1) I hop g(2m+2)
| | |
| |
| |
< <366 ys S S 2 +10us :
Ry
625 us !

Y Y N
v

1250 us

Figure 4.1 -Rx-Tx cycle of Bluetooth master transceiver in connection state

The duration of the remaining 30% is uniformly distributed between
minimum and maximum values (see Table 4-1). According to the standard,
for every packet arrival time a jitter of + 10 us has been set, to consider
imperfect synchronization between the two devices. The jitter was modeled
by a Gaussian distribution with zero mean and standard deviation "=10/3

us; given the model, 99% of jitter values fell within a + 10us interval, while

60

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

the remaining 1% exceeded this interval and were readjusted to edge

values in order to meet the standard specifications.

Table 4-1 - Bluetooth simulated packet parameters

Fixed duration Min. Duration Max. Duration
Time slot 625 us
1-time-slot-packet 126 ps 366 ns
3-time-slot-packet 1250 ps 1622 ns
5-time-slot-packet 2500 ps 2870 ps
NULL packet 126 ps

Figure 4.2 reports the extraction results of Wi-Fi proposed SIFS
feature in a 1000 Bluetooth packets simulated capture. The characteristic
of this feature in a Bluetooth communication pattern is displayed in blue;
whereas characteristic in one of the Wi-Fi1i 1000-packets capture as

reported in section 3.3.2, are shown in red:

SIFS Feature Extraction from Wi-Fi and Bluetooth Patterns
250 T T T T

I Wi-Fi
I Bluctooth
200 i

o
£ Feature Extraction from
(4 Wi-Fi Pattern
o
O 150 i
(o]
-
°
E 100 |- i
o
2
T
4
I’

sor Feature Extraction from 1

Bluetooth Pattern
0 1 1 LA_M“ML‘_‘_‘_L_‘_‘_&A‘_LA

) 100 200 300 400 500 600
IFS Value (psec)

Figure 4.2 - SIFS Feature Extraction from Wi-Fi and Bluetooth patterns

61

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

As desirable, the extractions made from different packet sequence
patterns (Wi-Fi vs. Bluetooth) showed very different results. This is a good
sign for classification of these two technologies. Such difference is a
consequence of what is reported in Bluetooth standard, where Bluetooth

time slot a maximum duration for PHY packet transmitted over the air is

fixed:

“In the connection mode, the Bluetooth transceiver transmits and receives
alternately (see Figure 4.1). In the figure, depending on the type and the
payload length, the packet size can be up to 366 ns’[27].

Even in the worst of cases, for Bluetooth maximum length packets,
we will find a silence gap between PHY packets communications
procedures of at least 249 ps, far away from the 10 ps expected in a Wi-Fi

PPDUs sequence.

As reported in the paper, “Automatic network recognition by feature
extraction: A case study in the ISM band” [available on appendix section
7.3], this feature, as proposed here, allowed a great performance for the

purposes of Wi-Fi vs. Bluetooth network differentiation.

62

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

4.2 FUTURE WORK

After proposing a feature that afforded precise differentiation
between Wi-Fi and Bluetooth technologies in the tests rendered [26], the
next natural step will be identify communication procedures with an
unique behaviors for other ISM band operating technologies, as Bluetooth,
ZigBee, CCTV, etc. This way, additional features that identify these
technologies could be added eventually to a classifier, improving its

performance.

In addition, it came to knowledge that for ZigBee networks, a Short
Interframe Space is also defined in the specifications, with duration of 12
symbols that equate to 192 ps on the version that operates over the ISM
band. This information leads us to believe that capturing packet sequences
from a ZigBee network and applying the proposed SIFS feature extraction
utilized for Wi-Fi, ZigBee networks will appear as a new class in the

middle of Wi-Fi and Bluetooth pattern’s extracted values.

Finally, implementation of a classification block, as foreseen in the
AIR-AWARE module, that displays all proposed features from a multi-
network environment pattern delivered by the energy detector will become
necessary. The module, using specific algorithms, will be able to find clues
in the pattern that will enable it to identify each one of the networks of

different technologies in play.

In the future, when analyzing and subsequent extractions are
performed also for interference entities, this device could also help manage

interference, i.e. microwave oven.

63

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Chapter 5

CONCLUSIONS

Utilizing the experimental packet captures from Wi-Fi networks and
simulated captures for Bluetooth networks towards feature extraction
statistical analysis, we were able to conclude that the SIFS feature®
proposed in this work was adequate to recognize what type of technology
network is operating -in a medium or high traffic scenario- over the air,
and, as reported on [26], enabled us to discriminate between Wi-Fi and
Bluetooth networks, which are the two most commonly found technologies

over the ISM band.

The implication of this fact is clear: a "black box" spectrum sensing —
the AIR-AWARE module- device that discriminates between technologies
operating in the ISM band, in a heterogeneous environment-through linear

classifiers- can be created and implemented in a cognitive radio context.

We set out on the assumption that packet interchange patterns were
technology specific; and, as such, by identifying pattern clues, network
recognition could be achieved. For this study on the ISM 2.4GHz band, this
assumption was verified to be correct, by granting network recognition
through the extracted SIFS feature —as showed results on elaborated paper

regarding differentiation Wi-Fi vs. Bluetooth-.

The present work extends beyond previous investigations by

considering Wi-Fi real traffic captures, and by focusing feature extraction

2% Defined for 802.11 communication systmes in [1], is the time interval between PPDUs, defined in as
Short Inter Frame Space corresponding to silence gaps on the medium when DATA-ACK procedures are
in play, and also in some other less frequent procedures.

64

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

and classification on MAC sublayer characteristics, leading to simplicity

and computational efficiency.

Features such as the proposed SIFS can be extracted using a generic
device that detects only temporization of presence/absence of energy in the
medium. Using temporization presence/absence of packets can be mapped
overtime in that pattern, allowing identification of the technology,
regardless of the information being transmitted. Extracted features are

based on MAC sublayer communication procedures.

The device will improve spectrum administration by detecting types
of technologies and the obtained to information could serve as an aid to
assign the most adequate fit of PHY parameters for transmission at each

node -amongst all available- matching user needs.

On the other hand, PPDUs duration feature help us understand
better the typical duration of PPDUs in a real world Wi-Fi network. In the
future, this information could become wuseful to differentiate Wi-Fi

networks from slotted technologies with shorter packet duration.

In the next stage of the project, the Wi-Fi packet captures achieved
during experimentation will serve as a training set for the linear classifiers
for this class; while the simulated Bluetooth captures will become the

training set for their class.

65

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Bibliography

[1]

[2]

[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

REFERENCES

LAN MAN Standards committee of the IEEE Computer Society.
Part 11 Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. ANSI/IEEE Std. 802.11, 2007 Edition.

Danijela Cabric, Artem Tkachenko, Robert W. Brodersen,
“Experimental Study of Spectrum Sensing based on Energy

Detection and Network Cooperation”, in TAPAS 06.

Theodiridis Sergios, Konstantinos Koutroumbas, “Pattern

Recognition”, Fourth Edition, Elsevier Inc, 2009.
http://www.netstumbler.com

http://java.sun.com
http:/metresearch.ics.uci.edu/kfujii/jpcap/doc/
http://www.radiotap.org

http://www.ubuntu.com
http://wireless.kernel.org/en/users/Drivers/b43
http://www .bluej.org
http://www.mathworks.com/products/matlab/
http://www.fte.com/products/FTS4BT-01.asp
http://www.wildpackets.com/solutions/wireless_analysis
http://www.cacetech.com/products/airpcap.html

66

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

http://www.netstumbler.com/
http://www.linuxcommand.org/man_pages/hcidump8.html
http://www.airmagnet.com/

http://www.wireshark.org/

http://airtraf.sourceforge.net
http://www . kismetwireless.net/
http://www.wi-fiplanet.com

Gandetto M. and Regazzoni C., “Spectrum Sensing: A Dsitributed
Approach for Cognitive Terminals,” IEEE Journal on selected areas

in communications, Vol.25 (3), 2007.
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Monitor_mode

J. Mitola III and G. Q. Maguire, Jr., "Cognitive radio: making
software radios more personal,” IEEE Personal Communications

Magazine, vol. 6, nr. 4, pp. 13-18, Aug. 1999.

Di Benedetto MG., Boldrini S., Martin C., Roldan J., “Automatic
Network Recognition by Feature Extraction: A case study in the ISM
band”, Crowncom 2010. 9-11, June, 2010.

LAN MAN Standards committee of the IEEE Computer Society.
Part 15 Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. ANSI/IEEE Std. 802.15, 2002 Edition.

Timothy Newman (Virginia Tech, USA); Joseph Evans (University of
Kansas, USA),“Parameter Sensitivity in Cognitive Radio Adaptation
Engines”, DySPAN 2008.

67

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communi-
cations,” IEEE Journal on Selected Areas In Communications, vol.

23, no. 2, p. 201, 2005.

Federal Communications Commission, “Facilitating opportunities for
flexible, efficient, and reliable spectrum use employing cognitive

radio technologies,” 2005.

R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKen- zie,
“Cognitive Networks: Adaptation and Learning to Achieve End- to

End Performance Objectives,” IEEE Communications Magazine, vol.

44, no. 12, dec 2006.

S. Wu, C. Lin, Y. Tseng, and J. Sheu, “A New Multi-Channel MAC
Protocol with On-Demand Channel Assignment for Multi-Hop
Mobile Ad Hoc Networks,” International Symposium on Parallel
Architec- tures, Algorithms, and Networks, I-SPAN, pp. 232-237,
2000.

Y. Yuan and P. Bahl, “Knows: Cognitive radio network over white

spaces,” in IEEE Symposium on New Frontiers in Dynamic

Spectrum Access Networks (DySPAN), apr 2007.

A. Motamedi and A. Bahai, “Mac protocol design for spectrum-agile
wireless networks: Stochastic control approach,” in IEEE

Symposium on New Frontiers in Dynamic Spectrum Access

Networks (DySPAN), apr 2007.

D. Leith and P. Clifford, “A Self-Managed Distributed Channel
Selec- tion Algorithm for WLANSs,” Proc IEEE RAWNET 2006, 2006.

R. Thomas, L. DaSilva, and A. MacKenzie, “Cognitive networks”
New Frontiers in Dynamic Spectrum Access Networks, 2005. DyS-
PAN 2005. 2005 First IEEE International Symposium on, pp. 352—
360, 2005.

68

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

[37]

S. S. Lake, “Cognitive networking with software programmable
intel- ligent networks for wireless and wireline critical

communications,” in Military = Communications Conference

(MILCOM), 2005.

69

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Appendix

DEVELOPED (CODES

7.1 Sniffer Code
7.2 MATLAB Developed functions and Scripts

7.3 Elaborated Paper: “Automatic Network recognition by feature
extraction: A case study in the ISM band”

70

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

7.1 SNIFFER CODE

import jpcap.*;

import jpcap.packet.*;
import java.util.*;
import java.io.*;

import java.lang.*;
import java.lang.Object;

public class PacketPHY implements PacketReceiver
{

int PacketCount = 1;

public PacketPHY(){

}

public void receivePacket(Packet packet){

//Prints out Packet and Packet Length:

System.out.printin();

System.out.printin("PacketNumber :" + PacketCount);
System.out.printin("Length :" + packet.len);
System.out.printin("Captured Length :" + packet.caplen);

Vector<String> vecdata = new Vector<String>();
Vector<String> vecheader = new Vector<String>();

//Prints out Packet Data:

System.out.print("DATA: ");

for (byte d : packet.data)
System.out.print(Integer.toHexString(d&O0xff) + ":");
System.out.printin();

//Packet Data Vector Creator

for(byte item2: packet.data)

{

String aux = Integer.toHexString(item2&0xff);
if(aux.length() < 2)

aux ="0" + aux;

vecdata.addElement(aux);

}

//System.out.printin("Data Vector: " + vecdata);

classifier(vecdata,packet);

PacketCount++;

}

public void classifier (Vector<String> vecdata,Packet packet)

{

Object RadioTapLengthl = vecdata.elementAt(2);

Object RadioTapLength2 = vecdata.elementAt(3);

String RTL1 = RadioTapLength1.toString();

String RTL2 = RadioTapLength2.toString();

String FinalRTL = RTL2+RTL1;

int RadioTapFinish = Integer.parselnt(FinalRTL,16);
System.out.printin("RadioTapHeaderLength : " + RadioTapFinish + " bytes");

float Framelen=packet.len-RadioTapFinish ;// The frame include FCS and Shared Key
System.out.printin("Frame Length :" + Framelen + " bytes"); // Stampa la durata dell trama;

71

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

//Getting Rate from RadioTapHeader

Object flag= vecdata.elementAt(4);

String flaghex= flag.toString();

int flagint= Integer.parselnt(flaghex,16);

String flagbinary=Integer.toBinaryString(flagint);

while (flagbinary.length()<8){

flagbinary="0"+ flagbinary;

}

char presentrateC= flagbinary.charAt(5);

int presentratel=Integer.parselnt(Character.toString(presentrateC));
char [] cell= {flagbinary.charAt(6),flagbinary.charAt(7)};
String twobits= new String (cell);

int twobitsint=Integer.parselnt(twobits,2);

//Others Parameters

char channelC = flagbinary.charAt(4);

int channell= Integer.parselnt(Character.toString(channelC));

int flagintTSF=Integer.parselnt(Character.toString(flagbinary.charAt(7))) ;
Vector <String> VecdataTSF = new Vector<String>();

if (flagintTSF ==1)

{ intivec;

for (ivec=8; ivec<16 ;ivec++){
VecdataTSF.addElement(vecdata.elementAt(ivec));

}

String TSFO1=
(VecdataTSF.elementAt(7)+VecdataTSF.elementAt(6)+VecdataTSF.elementAt(5)+VecdataTSF.elementAt(
4)+VecdataTSF.elementAt(3)+VecdataTSF.elementAt(2)+VecdataTSF.elementAt(1)+VecdataTSF.element
At(0));

long TSFIO1=Long.parseLong(TSF01,16);

//System.out.printin("TSFHEXA: " + TSFO1);

System.out.printIn("TSF :" + TSFIO1 + " usec");

}
if(channell == 0) {

if (presentratel==1)

{

switch (twobitsint)

{

case 00:

Object rate00= vecdata.elementAt(8);
String rateS00=rate00.toString();

float ratel0O=Integer.parselnt(rateS00,16);
float Rate0O = ratel00/2;

Math duration00=null;

System.out.printin("Rate :" + Rate00 + " Mbps");

System.out.printin("Duration Frame :" + duration00.round(Framelen*8/Rate00)+ " usec");
break;

case 01:

Object rate01= vecdata.elementAt(16);
String rateSO1=rate01.toString();

72

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

float ratel0O1=Integer.parselnt(rateS01,16);
float Rate0O1 = ratel01/2;
Math duration01=null;

System.out.printin("Rate :" + Rate0O1 + " Mbps");

System.out.printin("Duration Frame :" +duration01.round(Framelen*8/Rate01)+ " usec");
break;

case 02:

Object rate02= vecdata.elementAt(9);

String rateS02=rate02.toString();

float ratel02=Integer.parselnt(rateS02,16);

float Rate02 = ratel02/2;

Math duration02=null;

System.out.printin("Rate :" + Rate02 + " Mbps");
System.out.printin("Duration Frame :" +duration02.round(Framelen*8/Rate02)+ " usec");
//Preamble's Type

Object flag02=vecdata.elementAt(8);

String flag02S=flag02.toString();

int flag02l=Integer.parselnt(flag02Ss,16);

String flag02B=Integer.toBinaryString(flag02l);
System.out.printin(flag02B);

while (flag02B.length()<8){

flag02B="0"+ flag02B;

}

char preamble02C = flag02B.charAt(6);

int preamble02l=Integer.parselnt(Character.toString(preamble02C));
if (oreamble02l==1)

{

System.out.printin("Preamble : Short");

}

else

{

System.out.printin("Preamble : Long");

}

//Indication CFP

char CFP02C = flag02B.charAt(7);

int CFP02I= Integer.parselnt(Character.toString(CFP02C));
if (CFPO21==0)

{

System.out.printin("Period : Contention Period");

}

else

{

System.out.printin("Period : Contention Free Period");
}

break;

case 03:
Object rate03= vecdata.elementAt(17);

73

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

String rateS03=rate03.toString();

float ratel03=Integer.parselnt(rateS03,16);

float Rate03 = ratel03/2;

Math duration03=null;

System.out.printin("Rate :" + Rate03 + " Mbps");
System.out.printin("Duration Frame :" +duration03.round(Framelen*8/Rate03)+ " usec");
//Preamble's Type

Object flag03=vecdata.elementAt(16);

String flag03S=flag03.toString();

int flag03l=Integer.parselnt(flag03S,16);

String flag03B=Integer.toBinaryString(flag03l);

while (flag03B.length()<8){

flag03B="0"+ flag03B;

}

char preamble03C = flag03B.charAt(6);

int preamble03I=Integer.parselnt(Character.toString(preamble03C));
if (oreamble03I==1)

{

System.out.printin("Preamble : Short");

}

else

{

System.out.printin("Preamble : Long");

}

//Indication CFP

char CFP03C = flag03B.charAt(7);

int CFP0O3I= Integer.parselnt(Character.toString(CFP03C));
if (CFPO31==0)

{

System.out.printin("Period : Contention Period");

}

else

{

System.out.printin("Period : Contention Free Period");
}

break;

}

}

else {

switch (twobitsint)

{

case 02:

//Preamble's Type

Object flag02=vecdata.elementAt(8);

String flag02S=flag02.toString();

int flag02l=Integer.parselnt(flag02S,16);
String flag02B=Integer.toBinaryString(flag02l);

while (flag02B.length()<8){
flag02B="0"+ flag02B;
}

74

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

char preamble02C = flag02B.charAt(6);

int preamble02l=Integer.parselnt(Character.toString(preamble02C));
if (oreamble02I==1)

{

System.out.printin("Preamble : Short");
}

else

{

System.out.printin("Preamble : Long");
}

//Indication CFP

char CFP02C = flag02B.charAt(7);

int CFP02I= Integer.parselnt(Character.toString(CFP02C));
if (CFP021==0)

{

System.out.printin("Period : Contention Period");

}

else

{

System.out.printin("Period : Contention Free Period");

}

break;

case 03:

//Preamble's Type

Object flag03=vecdata.elementAt(16);

String flag03S=flag03.toString();

int flag03l=Integer.parselnt(flag03S,16);
String flag03B=Integer.toBinaryString(flag03l)
while (flag03B.length()<8){

flag03B="0"+ flag03B;

}

char preamble03C = flag03B.charAt(6);

int preamble03I=Integer.parselnt(Character.toString(preamble03C));
if (oreamble03I==1)

{

System.out.printin("Preamble : Short");
}

else

{

System.out.printin("Preamble : Long");
}

//Indication CFP

char CFP03C = flag03B.charAt(7);

int CFPO3I= Integer.parselnt(Character.toString(CFP03C));
if (CFPO31==0)

{

System.out.printin("Period : Contention Period");

}

else

{

75

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

System.out.printin("Period : Contention Free Period");

}

break;

}
//Getting Channel Information

else {
if (presentratel==1)

{

switch (twobitsint)

{

case 00:

Object rate00= vecdata.elementAt(8);
String rateS00=rate00.toString();

float ratel0O=Integer.parselnt(rateS00,16);
float Rate0O = ratel00/2;

Math duration00=null;

System.out.printin("Rate :" + Rate00 + " Mbps");
System.out.printin("Duration Frame :" +duration00.round(Framelen*8/Rate00) +" usec");

Object chV12= vecdata.elementAt(12);

Object chV11 = vecdata.elementAt(11);

String chS = (chV12.toString()+chV11.toString());
int chl=Integer.parselnt(chS,16);

String chB=Integer.toBinaryString(chl);

while (chB.length()<16){

chB="0"+ chB;

}

char GFSK=chB.charAt(4);
int GFSKI=Integer.parselnt(Character.toString(GFSK));

if(GFSKI==1)

{

System.out.printin("Modulation :Gaussian Frequency Shift Keying Modulation");
}

char Dynamic=chB.charAt(5);

int Dynamicl=Integer.parselnt(Character.toString(Dynamic));
if(Dynamicl==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");
}

char Spec5=chB.charAt(7);

int Spec5l=Integer.parselnt(Character.toString(Spec5));

if(Spec51==1)

{

System.out.printin("Band : 5 GHz Spectrum");
}

char Spec2=chB.charAt(8);
76

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

int Spec2l=Integer.parselnt(Character.toString(Spec2));

if(Spec2l==1)

{

System.out.printin("Band : 2 GHz Spectrum");
}

char OFDM=chB.charAt(9);
int OFDMlI=Integer.parselnt(Character.toString(OFDM));

if(OFDMI==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");
}

char CCK=chB.charAt(10);

int CCKlI=Integer.parselnt(Character.toString(CCK));

if(CCKI==1)

{

System.out.printin("Modulation : Code Complementary Keying");

}
break;

case 01:

Object rate01= vecdata.elementAt(16);
String rateSO1=rate01.toString();

float ratel0O1=Integer.parselnt(rateS01,16);
float Rate0O1 = ratel01/2;

Math duration01=null;

System.out.printin("Rate :" + Rate0O1 + " Mbps");

System.out.printin("Duration Frame :" +duration0l.round(Framelen*8/Rate01)+" usec");
Object chV2001 = vecdata.elementAt(20);

Object chV1901 = vecdata.elementAt(19);

String chS01= (chV2001.toString()+chV1901.toString());

int chl01=Integer.parselnt(chS01,16);

String chBO1=Integer.toBinaryString(chl01);

while (chBO1.length()<16){

chB01="0"+ chBO01;

}

char GFSK01=chB01.charAt(4);

int GFSKIO1=Integer.parselnt(Character.toString(GFSK01));
if(GFSKI01==1)

{

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");
}

char Dynamic01=chB01.charAt(5);

int DynamiclO1=Integer.parselnt(Character.toString(Dynamic01));
if(Dynamicl01==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");

}

char Spec501=chB01.charAt(7);

int Spec5101=Integer.parselnt(Character.toString(Spec501));
if(Spec5101==1)

{

System.out.printin("Band : 5 GHz Spectrum");

77

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

}

char Spec201=chB01.charAt(8);

int Spec2l01=Integer.parselnt(Character.toString(Spec201));
if(Spec2101==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO01=chB01.charAt(9);

int OFDMI01=Integer.parselnt(Character.toString(OFDMO01));
if(OFDMI01==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

}

char CCKO1=chBO01.charAt(10);

int CCKIO1=Integer.parselnt(Character.toString(CCK01));

if(CCKIO1==1)

{

System.out.printin("Modulation : Code Complementary Keying");

}
break;

case 02:

Object rate02= vecdata.elementAt(9);
String rateS02=rate02.toString();

float ratel02=Integer.parselnt(rateS02,16);
float Rate02 = ratel02/2;

Math duration02=null;

System.out.printin("Rate :" + Rate02 + " Mbps");

//Preamble's Type

Object flag02=vecdata.elementAt(8);

String flag02S=flag02.toString();

int flag02l=Integer.parselnt(flag02Ss,16);

String flag02B=Integer.toBinaryString(flag02l);

while (flag02B.length()<8){

flag02B="0"+ flag02B;

}

char preamble02C = flag02B.charAt(6);

int preamble02l=Integer.parselnt(Character.toString(preamble02C));
Object chV1302 = vecdata.elementAt(13);

Object chV1202 = vecdata.elementAt(12);

String chS02 = (chV1302.toString()+chV1202.toString());
int chl02=Integer.parselnt(chS02,16);

String chB02=Integer.toBinaryString(chl02);

while (chB02.length()<16){

chB02="0"+ chB02;

}

char GFSK02=chB02.charAt(4);

int GFSKI02=Integer.parselnt(Character.toString(GFSK02));
if(GFSKI02==1)

{

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");

}

78

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

char Dynamic02=chB02.charAt(5);

int Dynamicl02=Integer.parselnt(Character.toString(Dynamic02));
if(Dynamicl02==1)

{

System.out.printin(" Modulation : Dynamic CCK-OFDM ");

if (oreamble02l==1)
{

System.out.printin("Preamble : Short");
System.out.printin("Duration :" +(duration02.round(Framelen*8/Rate02+96))+ " usec");

}

else

{

System.out.printin("Preamble : Long");
System.out.printin("Duration :" +(duration02.round(Framelen*8/Rate02+192))+ " usec");
}

}

char Spec502=chB02.charAt(7);

int Spec5102=Integer.parselnt(Character.toString(Spec502));
if(Spec5102==1)

{

System.out.printin("Band : 5 GHz Spectrum");

}

char Spec202=chB02.charAt(8);

int Spec2l02=Integer.parselnt(Character.toString(Spec202));
if(Spec2102==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO02=chB02.charAt(9);

int OFDMI02=Integer.parselnt(Character.toString(OFDMO02));
if(OFDMI02==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

if (oreamble02I==1)
{

System.out.printin("Preamble : Short");

System.out.printin("Duration 2"
+(16+4+6+4*(duration02.round((16+6+Framelen*8)/(Rate02*4))))+ " usec");
}

else

{

System.out.printin("Preamble : Long");

System.out.printin("Duration 2"
+(16+4+6+4*(duration02.round((16+6+Framelen*8)/(Rate02*4))))+ " usec");

char CCK02=chB02.charAt(10);
int CCKI02=Integer.parselnt(Character.toString(CCK02));
if(CCKI02==1)

79

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

{

System.out.printin("Modulation : Code Complementary Keying");

if (oreamble02I==1)
{

System.out.printin("Preamble : Short");
System.out.printin("Duration :" +(duration02.round(Framelen*8/Rate02+96))+ " usec");

}

else

{

System.out.printin("Preamble : Long");
System.out.printin("Duration :" +(duration02.round(Framelen*8/Rate02+192))+ " usec");
}

}

//Indication CFP

char CFP02C = flag02B.charAt(7);

int CFP02I= Integer.parselnt(Character.toString(CFP02C));
if (CFP02I==0)

{

System.out.printin("Period : Contention Period");

}

else

{

System.out.printin("Period : Contention Free Period");

}
break;
case 03:

Object rate03= vecdata.elementAt(17);
String rateS03=rate03.toString();

float ratel03=Integer.parselnt(rateS03,16);
float Rate03 = ratel03/2;

Math duration03=null;

System.out.printin("Rate :" + Rate03 + " Mbps");
//Preamble's Type

Object flag03=vecdata.elementAt(16);

String flag03S=flag03.toString();

int flag03l=Integer.parselnt(flag03S,16);

String flag03B=Integer.toBinaryString(flag03l);

while (flag03B.length()<8){

flag03B="0"+ flag03B;

}

char preamble03C = flag03B.charAt(6);

int preamble03I=Integer.parselnt(Character.toString(preamble03C));

Object chV2103 = vecdata.elementAt(21);

Object chV2003 = vecdata.elementAt(20);

String chS03 = (chV2103.toString()+chV2003.toString());
int chl03=Integer.parselnt(chS03,16);

String chB03=Integer.toBinaryString(chl03);

80

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

while (chB03.length()<16){

chB03="0"+ chB03;

}

char GFSK03=chB03.charAt(4);

int GFSKIO3=Integer.parselnt(Character.toString(GFSK03));
if(GFSKI03==1)

{

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");
}

char Dynamic03=chB03.charAt(5);

int Dynamicl03=Integer.parselnt(Character.toString(Dynamic03));
if(Dynamicl03==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");

if (oreamble03I==1)

{

System.out.printin("Preamble : Short");

System.out.printin("Duration :" +(duration03.round(Framelen*8/Rate03+96))+ " usec");
}

else

{

System.out.printin("Preamble : Long");

System.out.printin("Duration :" +(duration03.round(Framelen*8/Rate03+192))+ " usec");
}

}

char Spec503=chB03.charAt(7);

int Spec5103=Integer.parselnt(Character.toString(Spec503));
if(Spec5103==1)

{

System.out.printin("Band : 5 GHz Spectrum");

}

char Spec203=chB03.charAt(8);

int Spec2l03=Integer.parselnt(Character.toString(Spec203));
if(Spec2103==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO03=chB03.charAt(9);

int OFDMI03=Integer.parselnt(Character.toString(OFDMO03));
if(OFDMI03==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

if (oreamble03I==1)
{

System.out.printin("Preamble : Short");
System.out.printin("Duration 2"
+(16+4+6+4*(duration03.round((16+6+Framelen*8)/(Rate03*4))))+ " usec");

else

81

Network Sensing with application to IEEE 802.11 communication systems

System.out.printin("Preamble
System.out.printin("Duration
+(16+4+6+4*(duration03.round((16+6+Framelen*8)/(Rate03*4))))+ " usec");

: Long");

}

}

char CCK03=chB03.charAt(10);

int CCKIO3=Integer.parselnt(Character.toString(CCK03));
if(CCKI03==1)

{

System.out.printin("Modulation : Code Complementary Keying");

if (oreamble03I==1)
{

System.out.printin("Preamble
System.out.printin("Duration

: Short");

}

else

{

System.out.printin("Preamble
System.out.printin("Duration

}

: Long");

}

//Indication CFP

char CFP03C = flag03B.charAt(7);

int CFP0O3I= Integer.parselnt(Character.toString(CFP03C));
if (CFPO3I==1)

{

System.out.printin("Period

}

else

{

System.out.printin("Period

}

: Contention Free Period");

: Contention Period");

break;

}
}

else {

switch (twobitsint)

{

case 00:

Object chV11 = vecdata.elementAt(11);

Object chV10 = vecdata.elementAt(10);

String chS = (chV11.toString()+chV10.toString());
int chl=Integer.parselnt(chS,16);

String chB=Integer.toBinaryString(chl);

while (chB.length()<16){

chB="0"+ chB;

- Jesus Roldan Diaz, 2010

:" +(duration03.round(Framelen*8/Rate03+96))+ " usec");

:" +(duration03.round(Framelen*8/Rate03+192))+ " usec");

82

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

char GFSK=chB.charAt(4);
int GFSKI=Integer.parselnt(Character.toString(GFSK));

if(GFSKI==1)

{

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");
}

char Dynamic=chB.charAt(5);

int Dynamicl=Integer.parselnt(Character.toString(Dynamic));
if(Dynamicl==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");
}

char Spec5=chB.charAt(7);

int Spec5l=Integer.parselnt(Character.toString(Spec5));

if(Spec51==1)

{

System.out.printin("Band : 5 GHz Spectrum");
}

char Spec2=chB.charAt(8);
int Spec2l=Integer.parselnt(Character.toString(Spec2));

if(Spec2l==1)

{

System.out.printin("Band : 2 GHz Spectrum");
}

char OFDM=chB.charAt(9);
int OFDMlI=Integer.parselnt(Character.toString(OFDM));

if(OFDMI==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");
}

char CCK=chB.charAt(10);

int CCKlI=Integer.parselnt(Character.toString(CCK));
if(CCKI==1)

{

System.out.printin("Modulation : Code Complementary Keying");

}

break;
case 01:

Object chV1201 = vecdata.elementAt(19);

Object chV1101 = vecdata.elementAt(18);

String chS01= (chV1201.toString()+chV1101.toString());
int chl01=Integer.parselnt(chS01,16);

String chBO1=Integer.toBinaryString(chl01);

while (chBO1.length()<16){

chB01="0"+ chBO01;

}

char GFSKO1=chB01.charAt(4);

int GFSKIO1=Integer.parselnt(Character.toString(GFSK01));
if(GFSKI01==1)

{

83

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");
}

char Dynamic01=chB01.charAt(5);

int DynamiclO1=Integer.parselnt(Character.toString(Dynamic01));
if(Dynamicl01==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");

}

char Spec501=chB01.charAt(7);

int Spec5101=Integer.parselnt(Character.toString(Spec501));
if(Spec5101==1)

{

System.out.printin("Band : 5 GHz Spectrum");

}

char Spec201=chB01.charAt(8);

int Spec2l01=Integer.parselnt(Character.toString(Spec201));
if(Spec2101==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO01=chB01.charAt(9);

int OFDMI01=Integer.parselnt(Character.toString(OFDMO01));
if(OFDMI01==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

}

char CCKO1=chBO01.charAt(10);

int CCKIO1=Integer.parselnt(Character.toString(CCK01));

if(CCKIO1==1)

{

System.out.printin("Modulation : Code Complementary Keying");

}

break;

case 02:

Object chV1202 = vecdata.elementAt(12);

Object chV1102 = vecdata.elementAt(11);

String chS02 = (chV1202.toString()+chV1102.toString());

int chl02=Integer.parselnt(chS02,16);

String chB02=Integer.toBinaryString(chl02);

while (chB02.length()<16){

chB02="0"+ chB02;

}

char GFSK02=chB02.charAt(4);

int GFSKI02=Integer.parselnt(Character.toString(GFSK02));
if(GFSKI02==1)

{

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");
}

char Dynamic02=chB02.charAt(5);

int Dynamicl02=Integer.parselnt(Character.toString(Dynamic02));
if(Dynamicl02==1)

{

System.out.printin("Modulation : Dynamic CCK-OFDM ");
}

84

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

char Spec502=chB02.charAt(7);

int Spec5102=Integer.parselnt(Character.toString(Spec502));
if(Spec5102==1)

{

System.out.printin("Band : 5 GHz Spectrum");

}

char Spec202=chB02.charAt(8);

int Spec2l02=Integer.parselnt(Character.toString(Spec202));
if(Spec2102==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO02=chB02.charAt(9);

int OFDMI02=Integer.parselnt(Character.toString(OFDMO02));
if(OFDMI02==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

}

char CCK02=chB02.charAt(10);
int CCKI02=Integer.parselnt(Character.toString(CCK02));

if(CCKI02==1)

{

System.out.printin("Modulation : Code Complementary Keying");
}

//Preamble's Type

Object flag02=vecdata.elementAt(8);

String flag02S=flag02.toString();

int flag02l=Integer.parselnt(flag02Ss,16);
String flag02B=Integer.toBinaryString(flag02l);
while (flag02B.length()<8){

flag02B="0"+ flag02B;

}

char preamble02C = flag02B.charAt(6);

int preamble02l=Integer.parselnt(Character.toString(preamble02C));
if (oreamble02I==1)

{

System.out.printin("Preamble : Short");
}

else

{

System.out.printin("Preamble : Long");
}

//Indication CFP

char CFP02C = flag02B.charAt(7);

int CFP02I= Integer.parselnt(Character.toString(CFP02C));
if (CFPO21==0)

{

System.out.printin("Period : Contention Period");

}

else

{

85

Network Sensing with application to IEEE 802.11 communication systems

System.out.printin("Period : Contention Free Period");

}
break;
case 03:

Object chV1303 = vecdata.elementAt(20);

Object chV1203 = vecdata.elementAt(19);

String chS03 = (chV1303.toString()+chV1203.toString());
int chl03=Integer.parselnt(chS03,16);

String chB03=Integer.toBinaryString(chl03);

while (chB03.length()<16){

chB03="0"+ chB03;

}

char GFSK03=chB03.charAt(4);

int GFSKIO3=Integer.parselnt(Character.toString(GFSK03));
if(GFSKI03==1)

{

- Jesus Roldan Diaz, 2010

System.out.printin("Modulation : Gaussian Frequency Shift Keying Modulation");

}
char Dynamic03=chB03.charAt(5);

int Dynamicl03=Integer.parselnt(Character.toString(Dynamic03));
if(Dynamicl03==1)

{

System.out.printin("MOdulation : Dynamic CCK-OFDM ");
}

char Spec503=chB03.charAt(7);

int Spec5103=Integer.parselnt(Character.toString(Spec503));
if(Spec5103==1)

{

System.out.printin("Band : 5 GHz Spectrum");

}

char Spec203=chB03.charAt(8);

int Spec2l03=Integer.parselnt(Character.toString(Spec203));
if(Spec2103==1)

{

System.out.printin("Band : 2 GHz Spectrum");

}

char OFDMO03=chB03.charAt(9);

int OFDMI03=Integer.parselnt(Character.toString(OFDMO03));
if(OFDMI03==1)

{

System.out.printin("Modulation : Orthogonal Frequency Division Multiplexing");

}

char CCK03=chB03.charAt(10);
int CCKIO3=Integer.parselnt(Character.toString(CCK03));

if(CCKI03==1)

{

System.out.printin("Modulation : Code Complementary Keying");
}

//Preamble's Type

Object flag03=vecdata.elementAt(16);
String flag03S=flag03.toString();

int flag03l=Integer.parselnt(flag03S,16);

86

Network Sensing with application to IEEE 802.11 communication systems

String flag03B=Integer.toBinaryString(flag03l);
while (flag03B.length()<8){

flag03B="0"+ flag03B;

}

char preamble03C = flag03B.charAt(6);

int preamble03l=Integer.parselnt(Character.toString(preamble03C));
if (oreamble03I==1)

{

System.out.printin("Preamble : Short");
}

else

{

System.out.printin("Preamble : Long");
}

//Indication CFP

char CFP03C = flag03B.charAt(7);

int CFP0O3I= Integer.parselnt(Character.toString(CFP03C));
if (CFPO31==0)

{

System.out.printin("Period : Contention Period");

}

else

{

System.out.printin("Period : Contention Free Period");

}

break;

}

}

}

Object auxob = vecdata.elementAt(RadioTapFinish);
String auxstring = auxob.toString();

int auxint = Integer.parselnt(auxstring,16);

Vector<String> DestAddress = new Vector<String>();
Vector<String> SorAddress = new Vector<String>();
int fragmentnumberl=0;

int sequencenumberfinall=0;

if (Framelen > RadioTapFinish+14)

{

Object sequencecontroll=vecdata.elementAt(RadioTapFinish+22);
String sequencecontrol1S=sequencecontroll.toString();

int sequencecontrolll=Integer.parselnt(sequencecontrol1S,16);
String sequencecontrol1B=Integer.toBinaryString(sequencecontrolll);
while (sequencecontrol1B.length()<8){

sequencecontrol1B="0"+ sequencecontrol1B;

}

Object sequencecontrol2=vecdata.elementAt(RadioTapFinish+23);
String sequencecontrol2S=sequencecontrol2.toString();
int sequencecontrol2l=Integer.parselnt(sequencecontrol2S,16);

- Jesus Roldan Diaz, 2010

87

Network Sensing with application to IEEE 802.11 communication systems

String sequencecontrol2B=Integer.toBinaryString(sequencecontrol2l);
while (sequencecontrol2B.length()<8){
sequencecontrol2B="0"+ sequencecontrol2B;

}

String fragmentnumberS=sequencecontrol1B.substring (4);
fragmentnumberl=Integer.parselnt(fragmentnumbers,2);

String sequencenumberS=sequencecontrol1B.substring (0,4);

String sequencenumberfinalS=sequencecontrol2B + sequencenumbers;

while (sequencenumberfinalS.length()<12){
sequencenumberfinalS="0"+ sequencenumberfinalS;

}

sequencenumberfinall=Integer.parselnt(sequencenumberfinals,2);

}
int mac;

switch(auxint)

{

case 00:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Association Request");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 16:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Association Response");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 32:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reassociation Request");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

- Jesus Roldan Diaz, 2010

88

Network Sensing with application to IEEE 802.11 communication systems

case 48:
System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reassociation Response");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 64:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Probe Request");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 80:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Probe Response");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 96:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reserved");

break;

case 112:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reserved");

break;

case 128:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Beacon Frame");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);
System.out.printin("Source Address :" + SorAddress);

- Jesus Roldan Diaz, 2010

89

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);

//Beacon Timestamp

vecdata.elementAt(RadioTapFinish+25+6)+vecdata.elementAt(RadioTapFinish+25+5)+vecdata.elementA
t(RadioTapFinish+25+4)+vecdata.elementAt(RadioTapFinish+25+3)+vecdata.elementAt(RadioTapFinish+
25+2)+vecdata.elementAt(RadioTapFinish+25+1)+vecdata.elementAt(RadioTapFinish+25)+vecdata.elem

entAt(RadioTapFinish+24);
break;

case 144:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype :ATIM");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 160:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Disassociation");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 176:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Authentication");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 192:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Deauthentication");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);

90

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

break;

case 208:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Action");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Destination Address : " + DestAddress);

System.out.printin("Source Address :" + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 224:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reserved");

break;

case 240:

System.out.printin("Frame Type : MANAGEMENT");
System.out.printin("Frame Subtype : Reserved");

break;

case 04:

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : Reserved");

break;

case 116:

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : Reserved");

break;

case 132:

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : Block Ack Request");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);

break;

case 148:
System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : Block Ack");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);

break;

case 164:

91

Network Sensing with application to IEEE 802.11 communication systems

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : PS-Poll");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);

break;

case 180:
System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : RTS");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);

break;

case 196:

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : CTS");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));}

System.out.printin("Receiver Address :" + DestAddress);
break;

case 212:

System.out.printin("Frame Type : CONTROL");

System.out.printin("Frame Subtype : ACK");
for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));}

System.out.printin("Receiver Address :" + DestAddress);
break;

case 228:

System.out.printin("Frame Type : CONTROL");

System.out.printin("Frame Subtype : CF-End");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);

break;

case 244:

System.out.printin("Frame Type : CONTROL");
System.out.printin("Frame Subtype : CF-End+CF-ACK");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);

- Jesus Roldan Diaz, 2010

92

Network Sensing with application to IEEE 802.11 communication systems

System.out.printin("Transmitter Address : " + SorAddress);
break;

case 0x08:
System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Data");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 24:

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Data+CF-Ack");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 40:

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Data+CF-Poll");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 56:

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Data+CF-Ack+CF-Poll");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 72:

- Jesus Roldan Diaz, 2010

93

Network Sensing with application to IEEE 802.11 communication systems

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Null(No Data)");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 88:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : CF-Ack (No Data)");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 104:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : CF-POII (No Data)");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 120:

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Sutype : CF-Ack+CF-Poll (No Data)");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 136:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : QoS Data");
for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));

- Jesus Roldan Diaz, 2010

94

Network Sensing with application to IEEE 802.11 communication systems

SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 152:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : QoS Data + CF-Ack");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 168:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : Qos Data + CF-Poll");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 184:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : QoS Data+CF-Ack+CF-Poll");
for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)

{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 200:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : QoS Null");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmitter Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 216:

- Jesus Roldan Diaz, 2010

95

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

System.out.printin("Frame Type : DATA");
System.out.printin("Frame Subtype : Reserved");
break;

case 232:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype : QoS CF-Poll");

for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)
{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}

System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmittert Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);
break;

case 248:

System.out.printin("Frame Type : DATA");

System.out.printin("Frame Subtype :QoS + CF-Ack(No Data)+CF-Poll(No Data)");
for (mac = (RadioTapFinish+4); mac<(RadioTapFinish+10); mac++)

{ DestAddress.addElement(vecdata.elementAt(mac));
SorAddress.addElement(vecdata.elementAt(mac+6));}
System.out.printin("Receiver Address :" + DestAddress);
System.out.printin("Transmittert Address : " + SorAddress);
System.out.printin("Fragment Number :" + fragmentnumberl);
System.out.printin("Sequence Number :" + sequencenumberfinall);

break;

default:
System.out.printin("CHECK CODE");
break;

}

}

public static void main(String[] args)

{

NetworkInterface[] devices = JpcapCaptor.getDevicelList();
//for each network interface

for (inti=0; i< devices.length; i++)

{

//print out its name and description

System.out.printin(i+": "+devices[i].name + "(" + devices [i].description+")");

//print out its datalink name and description
System.out.printin(" datalink: "+devices[i].datalink_name + "(" + devices]i].datalink_description+")");

//print out its MAC address

System.out.print(" MAC address:");

for (byte b : devices[i].mac_address)
System.out.print(Integer.toHexString(b&O0xff) + ":");
System.out.printin();

//print out its IP address, subnet mask and broadcast address
for (NetworkinterfaceAddress a : devices[i].addresses)
System.out.printin(" address:"+a.address + " " + a.subnet +

}

+ a.broadcast);

96

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

int index=2; // set index of the interface that you want to open.

//Open an interface with openDevice(NetworkInterface intrface, int snaplen, boolean promics, int
to_ms)

try

{

JpcapCaptor captor=JpcapCaptor.openDevice(devices[index], 1600, true, 1);
captor.loopPacket(1020,new PacketPHY());

captor.close();

}

catch (Exception e){

}

}

97

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

7.2 MATLAB DEVELOPED FUNCTIONS AND SCRIPTS

1. MTD.m: Generates from sniffer’s capture file data a pattern

as if it was provided by some energy detector.

[TSFVector,DurationVector]=import WiFi(filename)

1TSF = length(TSFVector);

TimeDiagram = zeros(l,TSFVector(1lTSF)+DurationVector (1TSF)+1);

for il = 1:1TSF

timebegin = TSFVector(il);

Durationflag = DurationVector(il);

for jl = 1 : Durationflag+l

position = timebegin + jl1;

TimeDiagram(position) = TimeDiagram(position)+1;
end
end
figure(1)
x = linspace(0,length(TimeDiagram)-1,length(TimeDiagram));
y = TimeDiagram;
p = plot(x,y);

axis ([0 length(TimeDiagram) 0 1.5]);

title('Time Diagram');

xlabel('time [usec]');

ylabel('Presence/Absence of a Packet over the air');

set(p, 'Color', 'red', 'LineWidth',2);

98

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

2. Import WiFi.m: Imports from sniffer’s capture file necessary

data to recreate PPDU sequences.

function [TSFVector,DurationVector]=import WiFi(filename)

¢filename = '2503capture5.txt’

$PPDU duration extraction

fid = fopen (filename, 'a+');

acgstring = fileread(filename);

indexl = regexp(acgstring, 'Duration');
PacketsCaptured = length(indexl);

index2 = regexp(acgstring, 'Period A
indexlast = index2-1;

DurationVector = zeros(l,PacketsCaptured);

for i0 = 1l:PacketsCaptured

textdurationline = acgstring(indexl1(i0):indexlast(i0));

oo

textscannedduration = textscan(textdurationline, '%*s %$*s $f %*s');

DurationVector(i0) = cell2mat(textscannedduration);

end

$TSF extraction

fclose(fid);

fid = fopen (filename, 'a+');
acgstringTSF = fileread(filename);
indexTSF1 = regexp(acqgstringTSF, 'TSF');
PacketsCaptured = length(indexTSF1l);
indexTSF2 = regexp(acgstring, 'Rate');
indexlastTSF = indexTSF2-1;

TSFVector = zeros(1l,PacketsCaptured);

for jO = l:PacketsCaptured

textTSFline = acgstringTSF(indexTSF1(j0):indexlastTSF(j0));

textscannedTSF = textscan(textTSFline, '$*s %*s %f %*s');
TSFVector(j0) = cell2mat(textscannedTSF);

end

99

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

TSFVector = TSFVector - TSFVector(l);
fclose(fid);

$Preamble extraction

fid = fopen (filename, 'a+');

acgstringPre = fileread(filename);

indexPrel = regexp(acgstringPre, 'Preamble');
PacketsCaptured = length(indexPrel);

indexPre2 = regexp(acgstring, 'Duration ')
indexlastPre = indexPre2-1;

PreVector = zeros(1l,PacketsCaptured);

for jO = l:PacketsCaptured

textPreline = acgstringPre(indexPrel(j0):indexlastPre(j0));

oo
oo

textscannedPre = textscan(textPreline, '%*s %$*s %s');
strtest = cell2str(textscannedPre);
TF = strcmp('Long', strtest);

if (TF == 1)

TSFVector(j0) TSFVector (j0)-192;

else

TSFVector(j0) TSFVector (j0)-96;

end

end

TSFVector = TSFVector - TSFVector(l);
fclose(fid);

100

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

3. FeatureExtraction.m: Algorithm that allow extraction of SIFS

feature from any packet sequence pattern.

Function[IFSVector,MaxPPDUduration, Interference]=FeatureExtraction(Du

rationVector, TSFVector)

1DV = length(DurationVector)-1;

cellIFs = 0;

IFSVector=[];

for DurationCounter = 1:1DV

IFS = TSFVector(DurationCounter+1l)-TSFVector (DurationCounter)-

DurationVector (DurationCounter);

if

(0.65*DurationVector (DurationCounter)>DurationVector (DurationCounter+

1)&(IFS<625)&(IFS>0))

cellIFS = celllIFS+1;

IFSVector (cellIFS)=IFS;

CounterImportantValues(cellIFS)=DurationCounter;

end

end

for fsc = l:length(CounterImportantValues)

if (fsc==1)

MaxPPDUduration(1l)= DurationVector(1l);

IFSPlotted(1l)=IFSVector(1l);

else
intmin = CounterImportantValues(fsc-1);
intmax = CounterImportantValues(fsc);

101

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

PPDUset = DurationVector(intmin:intmax);

MaxPPDUduration(fsc) = max(PPDUset);

IFSPlotted(fsc) = IFSVector(fsc);

end

end

Interference=0;

102

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

4. MSBluetoothTrafficGeneration.m : Simulates a Bluetooth

connection state Master-Slave communication packet sequence:

function

[DurationVectorBluetooth, TSFVectorBluetooth]=MSBluetoothTrafficGenera
tion

$IFs and Max PPDU Duration

TS_duration = 625e-6;

jitter = 10e-6;

maxP_duration 366e-6;

NULL_ duration 126e-6;
1 = 15000;
probability = 0.7;

packet_duration = [];

arrival time = [];

% Scenario 3:

% 80% packets last 1 time slot

% 15% packets last 3 time slot

% 5% packets last 5 time slot
arrival time(l) = 0;

for i = 1:1

if mod(i,2) == 1
% odd packet -> data packet (master)

°

chooser = rand(1,1);

103

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

if chooser <= 0.8 % 1 time slot

hmts = 1; % how many time slots

elseif chooser > 0.95 % 5 time slot

hmts = 5; % how many time slots

~e

else % 3 time slot

hmts = 3; % how many time slots

~e

end

switch hmts

case 1 % 1 time slot

if rand <= probability

packet duration(i) maxP_duration;

else

packet duration(i) NULL_duration + le-

6*randint(1,1,[0, (maxP_duration-NULL duration)*le6]);

end

if i <1

arrival_time = [arrival_time

arrival time(length(arrival time))+TS_duration];

end

case 3 % 3 time slot

if rand <= probability

packet duration(i) = 1622e-6;

104

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

else

packet duration(i) = 2*TS_duration + le-

6*randint(1,1,[0,372]);

end

if i <1

arrival_time = [arrival_time

arrival time(length(arrival time))+3*TS_ duration];

end

case 5 % 5 time slot

if rand <= probability

packet duration(i) 2870e-6;

else

packet duration(i) 4*TS duration + le-

6*randint(1,1,[0,370]);

end

if i <1

arrival_time = [arrival_time

arrival time(length(arrival time))+5*TS_duration];

end

end

else

% even packet -> NULL packet as ACK (slave)

°

105

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

packet duration(i) = NULL duration;

if i <1

arrival_time = [arrival_time

arrival time(length(arrival time))+TS_duration];

end
end
end
for i = 2:1
j = randn*jitter/3; % 99% of values in +or- 3 sigma -> in +or-
jitter

if j < - jitter

j = - jitter;

end

if j > jitter

j = jitter;

end

arrival time(i) = arrival time(i)+j;

end

DurationVectorBluetooth = 1076.*packet_duration;

TSFVectorBluetooth = 1076.*arrival time;

106

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

7.3

ELABORATED PAPER: “AUTOMATIC NETWORK RECOGNITION BY

FEATURE EXTRACTION: A CASE STUDY IN THE ISM BAND”

Accepted for publication in Proceedings of the 5" International Conference on Cognitive Radio Oriented Wireless
Networks and Communications, Special Session on Cognitive Radio and Networking for Cooperative Coexistence of
Heterogeneous Wireless Networks, June 9-11 2010, Cannes, France.

Automatic network recognition by feature
extraction: a case study in the ISM band

Maria-Gabriella Di Benedetto, Senior Member, IEEE, Stefano Boldrini, Carmen Juana Martin Martin,
and Jesus Roldan Diaz

Abstract— Automatic network recognition offers a
promising framework for the integration of the cognitive
concept at the network layer. This work addresses the problem
of automatic classification of technologies operating in the ISM
band, with particular focus on Wi-Fi vs. Bluetooth recognition.
The proposed classifier is based on feature extraction related to
time-varying patterns of packet sequences, i.e. MAC layer
procedures, and adopts different linear classification
algorithms. Results of classification confirmed the ability to
reveal both technologies based on Mac layer feature
identification.

Index Terms—Cognitive networking, network discovery,
automatic network classification

I. INTRODUCTION

his work is framed under the umbrella of the AIR-
AWARE Project, developed to achieve classification
amongst technologies and interference entities
operating over the ISM band. This project aims at creating a
black box — the AIR-AWARE module — capable of
classifying technologies, as well as different types of
interference in play.
Such classification is important for cognitive mechanisms to
be implemented in the network, given the numerous
commercial technologies operate in this range of the
spectrum, such as:
IEEE 802.11 networks: 2.4 GHz and 5.8 GHz bands;
¢ Bluetooth: 2.4 GHz band, using Frequency Hopping and
any of 79 available channels;
HIPERLAN [High Performance Radio LAN]: European
alternative to IEEE 802.11, operating in the 5.8 GHz band
to avoid interference entities at 2.4 GHz,
Closed-Circuit TV: Security cameras at 2.4 GHz;
ZigBee IEEE 802.15.4: 2.4 GHz range band;
¢ Wireless Mouse and Keyboard: 2.4 GHz band.
Probably, the most common interference at 2.4 GHz comes
from the microwave oven, followed by baby monitors and
cordless Wi-Fi phones, and the interference produced by
DECT standard cordless phones, operating in the 1.9 GHz
band. When in use, these devices can compromise the
quality of an IEEE 802.11 network.
The final goal is to propose a classification strategy based
on information regarding protocol layers above the physical
one (PHY). In particular, the objective is to identify MAC
sublayer [1,2] specific features for each of the above
technologies. Previous work, as for example [3], has

Manuscript submitted March 21, 2010. This work was supported in part by
the European Commission in the framework of COST Action 1C0902:
Cognitive Radio and Networking for Cooperative Coexistence of
Heterogeneous Wireless Networks.

The authors are with the Info-Com Department, School of Engineering,
University of Rome La Sapienza, Via Eudossiana 18, 00184, Rome, Italy.
E-mail address: dibenedetto@newyork.ing.uniromal..it.

addressed a similar problem, by classifying Wi-Fi vs.
Bluetooth, using a spectrum sensing procedure based on
distributed detection theory. The present work extends
beyond previous investigations by considering Wi-Fi real
traffic captures, and by focusing feature extraction and
classification on MAC sublayer characteristics, leading to
simplicity and computational efficiency.

In this work, feature identification lays its foundation on the
observation that packet exchange patterns are technology-
specific. As such, by identifying patterns clues, network
recognition can be achieved. In particular, the study focuses
on the ISM 2.4 GHz band. A first step consists in providing
the AIR-AWARE module with a device capable of sensing
the spectrum with a good time resolution. Albeit this piece
of hardware will not be in a position to demodulate and
decode the distinct signals in the air, it will enable AIR-
AWARE to statistically study temporization of presence or
absence of energy - against pre-defined thresholds — and
therefore decode the packet sequence structure, in real time.
Figure 1 illustrates the schematic of the cognitive energy
detector, as well as software modules for the recognition of
each technology embedded onto the device.

Pattern / 3
E

ENERGY DETECTOR

Figure 1 - The AIR-AWARE module

The study presented in this paper focuses on 802.11 (Wi-Fi)
and 802.15.1 (Bluetooth) network recognition. To achieve
recognition of both technologies, a set of features will be
proposed. These features will serve as input for a linear
classifier, that automatically performs classification among
these two technologies.

The paper is organized as follows. Section II contains the
description of the experimental set-up, i.e. the environment
and tools by which data were collected and generated. The
packet data-base is described in Section III, and particular
focus on the Wi-Fi data-base (Section II.LA) vs, the
Bluetooth data-base (Section III.LB). The classification
algorithms are all linear classifiers as analyzed in Section
IV; four different approaches are taken into consideration,
i.e. Perceptron, Pocket, Least Mean Squares (LMS), and
Sum of Error Squares Estimation (SOE). Experimental
results on automatic classification of Wi-Fi vs. Bluetooth
are reported in Section V. These results are discussed in
Section VI, which also contains the conclusions of this
study.

107

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

II. EXPERIMENTAL SET-UP

This Section describes the environment and tools used for
collecting the reference data and build-up the data-base.
As for Wi-Fi, real data packets were detected within
experimental measurements, using a packet capturing device
(“Sniffer Station”). These measurements were carried out in
the ACTS laboratory, located on the 2™ floor of the
Information and Communication Department (InfoCom
Dept.), in the Faculty of Engineering of the University of
Rome “La Sapienza”, Rome, Italy.
A long corridor, with offices and laboratories on both sides,
composes the 2™ floor of the building, the ACTS lab being
one of these laboratories. The (main) Access Point, to whose
frequency channel the sniffer was tuned to, is located in this
corridor, near the ceiling, at a height of about 2.5 - 3 meters
from the ground, and at a distance of about 4 - 5 meters
from the ACTS laboratory door.
The computers were placed on a fixed location on a table, at
a height of about 1 - 1.5 meters from the ground, at a
distance of about 1.5 meters from the nearest wall and of 2
meters from a door, that leads to the corridor mentioned
above, i.e. the distance between the computers and the
Access Point was about 5 - 6 meters. The distance between
each computer was about 0.5 meters. On this same floor
there are about 20 additional offices, containing about 2 - 3
computers each. Since we expected that any of these may be
connected to the main Access Point during the
measurements, and in the aim of capturing “clean data” for
the training set, we performed measurements at night after
verification that no other computer was active during
captures.
There are also other Access Points in the same building, but
tuned to other frequency channels. However, some packets
of these other Access Points may have been captured. That
occurs because of the frequency channels partial
overlapping, that is expected in the IEEE 802.11 Standard.
To this respect, collected data were carefully examined, in
order to ensure again that only packets of the relevant
network were captured.
Four computers were used to perform measurements. Three
computers were used to generate traffic in heterogeneous
traffic conditions. The fourth, used as the Sniffer Station,
had the following technical specifications:
* Model: HP Pavilion DV2320US
* Processor: AMD Turion 64 X2 TL 56
* RAM Memory: 2GB
* Network Wireless Adapter: AirForce 54g 802.11 a/b/g
PCI Express, with a BCM4311 chipset
Operating System was Linux Ubuntu 9.10, with the real-
time kernel 2.6.3/-9-rt. The driver used for the Broadcom
4311 chipset was the b43. The main Access Point was a
Cisco Aironet 12xx 802.11 b.
As for Bluetooth packets, in this first phase we decided to
design a complete simulator by which Bluetooth packets
were obtained. By doing so, one of the two data packet
stream was fully controllable by software.

III. PACKET DATA-BASE
A. Capturing Wi-Fi packets

In order to capture Wi-Fi Packets, a packet capturing
application was developed using the Java library jpcap [4].
The Wi-Fi standard foresees a logic unit, the MAC PDU,
while the unit sent over the air interface, called PPDU,

includes beyond the MAC PDU, two additional fields
(preamble and header). The driver used for the 802.11
network adapter enabled to intercept data of every PPDU [1]
within the Sniffer range by means of its monitor mode [5].
This driver was also compatible with the radiotap header
[6], which provides information such as preamble type, or
time of arrival of first bit, for the captured MAC PDU.
Experiments were made in three different conditions: one,
two, and three computers (nodes) associated to the Access
Point. In all conditions, each computer was downloading at
least two files or processing a video call; this way, we could
ensure a high traffic scenario.

Two 1000-packet captures were run for each condition.

B. Generation of Bluetooth packets

Bluetooth simulated packets were generated using
MATLAB. The reference standard for this simulation is the
IEEE Standard 802.15.1 — 2005 [2], i.e. bitrate of 1 Mbit/s.
Piconets of two devices in connection state (one master and
one slave) were considered. The two devices send their
packets alternately: one device (the master, for example)
sends its data packets, and for every received packet, the
other device (the slave) sends back an acknowledgement.
Data packets sent by the master can occupy 1, 3 or 5 time
slots (where the time slot is 625us), according to their
length, whereas acknowledgement packets (NULL packets,
with a fixed length of 126 bits) occupy 1 time slot.
Two different scenarios were considered:

* Scenario 1: data packets occupy only 1 Time Slot

* Scenario 2:

— 80% Data Packets occupy 1 Time Slot

- 15% Data Packets occupy 3 Time Slots

- 5% Data Packets occupy 5 Time Slots
In every scenario, 70 % of the data packets have a duration
that is fixed by the 802.15.1 standard specification to the
values shown in Table I. The duration of the remaining 30%
is uniformly distributed between minimum and maximum
values (see Table I).
According to the standard, for every packet arrival time a
jitter of + 10us has been set, to consider imperfect
synchronization between the two devices. The jitter was
modeled by a Gaussian distribution with zero mean and
standard deviation 0=10/3us; given the model , 99% of jitter
values fell within a + 10us interval, while the remaining 1%
exceeded this interval and were readjusted in order to meet
the standard specifications.

TABLE I
BLUETOOTH STANDARD SPECIFICATION

Fixed Min. Duration ~ Max. Duration
duration
Time slot 625us
1-time-slot-packet 126us 366us
3-time-slot-packet 1250us 1622us
S-time-slot-packet 2500us 2870us
NULL packet 126us

108

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

IV. AUTOMATIC CLASSIFICATION

We started by designing a generic linear classifier that was
able to distinguish amongst C classes, each class being
characterized by M features. In general, a linear classifier
divides the feature space into C regions; this division comes
about through calculation of discrimination functions [7]
that characterize the region of the space where each class is
located:

M
g(x)=w, + Ewi_jxi,

i=1

ji=12,..c , (1)

where =[W0sW|s ,,,,,, ,WM] is known as the weight

vector, and X = [xl X reean Xy] is a point on the decision

hyperplane.

The classifier objective is to find each discrimination

function, and generate a decision using the major score

criterion. This score represents a measure of similarity

between the object and each class. The classification module

was implemented on MATLAB, based on four classification

methods selected because of their simplicity and

computational appeal:

* Perceptron. One of the oldest methods, its convergence
depends on the separability of the classes. The idea is to
calculate the weight vector through an iterative method,

formulated in this way [8]:
aJ
w(t+) =w(ty-p, P | o)

w=w(t)

where, as displayed in the equation, there is a learning
coefficient p, and the minimization of a cost function is
required, defined in this case as :

Jw)= Y 8 w'X , 3)

Xy

where Y is the subset of training vectors which are
misclassified by the weight vector w, and d.X is a coefficient
that takes value equal to -1 if X=Classl, and equal to 1 if
XEClass2 or vice-versa. In the multiclass case, 6X equal to
-1 for all classes.
* Pocket. A version of Perceptron, that provides a better
behavior when separability of the classes is not totally
guaranteed. The key [9] is to run perceptron learning,
while keeping an extra set of weights in the pocket. By
this way, if a new iteration provides a weight vector that
classifies a greater number of training vectors than its
predecessor, then that last is chosen and used in the next
step; otherwise, the vector obtained in the preceding
iteration is maintained as the weight vector.
Least Mean Squares Method (LMS). Similar to
Perceptron, but the cost function, that is minimized
corresponds to the error. Here, the weight vector is
computed so as to minimize the Mean Square Error
(MSE) between true and desired output (y) [8]:

J(w)=E|:‘y—XTw‘2:| S 4

where the mean value (that cannot be generated due to the
lack of statistical data), is replaced by samples obtained
during experimentation. The weight vector is therefore
obtained according to the following rule:

wk)=wk-D+p X (y, - X wk=1) , (5

where py is a learning coefficient.

* Sum of Errors Squares Estimation (SOE). Similar to
LMS, here the cost function takes the form of the sum of

quadratic error for each of the N training vectors X:
N

N
I ==X W’ =Yel (6)
k=1 =
where the calculation of weight vectors is the simple matrix
operation [8] shown below:

I X=X W=0= XX w=YXy) (7
k=1 k=1 k=1

In order to compute both optimal w and desired values y, the
Ho-Kashyap algorithm was used [10].

V.EXPERIMENTATION

A. Training set and feature extraction

As described in Section III, in the Wi-Fi case, six (6) 1000-
packet captures formed the training set. In the Bluetooth
case, simulated MATLAB captures consisted in two 6000-
packet sequences corresponding to Scenarios 1 and 2.

The first proposed feature is the time interval between
PPDUs, defined in [1] as Short Inter Frame Space (SIFS)
corresponding to silence gaps on the medium when DATA-
ACK procedures are in play. Most IFS timings are fixed and
independent of the bitrate at the PHY [1]. Of all existing IFS
types, SIFS has a nominal value of 10us for the ISM 2.4GHz
band, and is the most likely to occur in a scenario with
medium to high traffic; it is usually used by a node
responding to any polling, and always prior to: a)
transmission of an ACK frame; b) a CTS frame; c) a second
or subsequent PPDU of a fragment burst. For automatically
extracting the SIFS and estimating its statistical behavior,
SIFS was differentiated from a non-SIFS when two
consecutive PPDU durations were such that: 0.6*PPDU;,;, >
PPDUjg1.

The second proposed feature is the duration of the longest
packet considering all the packets between two consecutive
silence gaps, previously identified as SIFS.

Note that both proposed features are extremely simple and
easy to extract thanks to simplest hardware such as an
energy detector.

Figure 2 illustrates the feature plane for both Wi-Fi (real
traffic and Bluetooth (simulated traffic) training set. The
Bluetooth data correspond to Scenario 1 (single-slot case).

FEATURES SPACE

5000
+ WiFi Training

3 4500 O Bluetooth Training 7

& 4000 | 1

8 35000 :

% 3000} .

E

g 2500} 1

5 i+ +

2 2000}]

E 1500 .

2 H++ + 4+ 4+

£ 1000 + o+ + .

5 500 1

= —

100 200 300 400 500 600 700
Duration of Silence Gaps [usec]

Figure 2 - Feature Plane for Wi-Fi and Bluetooth single-slot
Figure 3 shows the feature plane in the multi-slot Bluetooth
Communication scenario (Scenario 2).

109

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

Note the presence of a few Wi-Fi points invading the
Bluetooth “zone”. Capture file revision indicated that these
corresponded to non-SIFS, i.e. erroneously estimated SIFS.
These points were however less than 1% of total.

FEATURES SPACE
5000 . . .
+ Wi-Fi Training

© Bluetooth Training E

4500

ne Gaps [psec]
e
1=
@
(=1
T
L

Max Packet Duration between two S
-
I
L=
(=]

100 200 300 400 500 600 700
Duration of Silence Gaps [usec]

Figure 3 - Feature Plane for Wi-Fi and Bluetooth multi-slot

FEATURES SPACE

5000 T T T
+ Wi-Fi Training

g 4500 F O Blustooth Training
5 - - Pocket
f_:-. 4000 =s=s=-= Darcaptron
o - - LMS
= s
E 3500 = T [— SOE
% 3000} :
=
g 2500 | 1
2 +
£ 2000 1
E
a
E
E
=
=

200 300 400 500 600 700
Duration of Silence Gaps [usec]
Figure 4 - Automatic classification of Wi-Fi vs. Bluetooth
single-slot
FEATURES SPACE
— . .
,-(Perceptron

=
3
2
B,

&
2
2

between two

100 200 300 400 300 600 700
Duration of Silence Gaps [usec]
Figure 5 - Automatic classification of Wi-Fi vs. Bluetooth
multi-slot
B. Results of automatic classification
The four classification algorithms were run over the training
sets of Figs. 2 and 3. Results are reported on Figs. 4 and 5,
for the single-slot vs. multi-slot Bluetooth cases. The

classifiers were then applied to data not belonging to the
training sets, i.e. a new 1000-packet Wi-Fi capture (1.4
seconds capture duration), and two new 1000-packets
Bluetooth simulations (Scenarios 1 and 2) were generated
(each around 0.7 seconds long). Results of classification
percentage of Wi-Fi vs. Bluetooth (single-slot case), when
the input to the classifier is formed by either Wi-Fi captures
or Bluetooth sequences of packets are reported in Tables I1
and III, for the single vs. multi-slot Bluetooth, respectively.
TABLE II
CLASSIFICATION RESULTS

Classifier Input Classification into Classification into

Network Wi-Fi single-slot
Bluetooth
Pocket Bluetooth 0% [0/456] 100% [456/456]
Pocket Wi-Fi 100% [352/352] 0% [0/352]
Perceptron Bluetooth 0% [0/456] 100% [456/456]
Perceptron Wi-Fi 100% [352/352] 0% [0/352]
LMS Bluetooth 0% [0/456] 100% [456/456]
LMS Wi-Fi 100% [352/352] 0% [0/352]
SOE Bluetooth 0% [0/456] 100% [456/456]
SOE Wi-Fi 100% [352/352] 0% [0/352]
A mixed input to the classifiers (multi-network

environment) was then considered. Given that the Wi-Fi
capture is on real traffic, while the Bluetooth streams were
simulated, the mixture could be controlled by software. In
particular, three different mixs were generated: a)
predominant Wi-Fi (1000 Wi-Fi packets vs. 200 Bluetooth
packets); b) balanced (1000 Wi-Fi packets vs. 1000
bluetooth packets); c¢) Bluetooth predominant (1000 Wi-Fi
vs. 2000 Bluetooth packets). All Bluetooth sequences were
multi-slot. Wi-Fi captures were 1.4 seconds long, while
Bluetooth simulations lasted 0.16, 0.75 and 1.6 seconds.
Due to differences in the duration of captures only partial
overlapping in the combined packet sequences was
achieved. Results for this test are displayed on Table IV.
TABLE III
CLASSIFICATION RESULTS

Classifier Input Classification into Classification into
Network Wi-Fi multi-slot
Bluetooth
Pocket Bluetooth 0% [0/462] 100% [462/462]
Pocket Wi-Fi 98.86% [348/352] 1.14% [4/352]
Perceptron Bluetooth 0.43% [2/462] 99.57% [460/462]
Perceptron Wi-Fi 98.86% [348/352] 1.14% [4/352]
LMS Bluetooth 34.85% [161/462] 65.15% [301/462]
LMS Wi-Fi 99.43% [350/352] 0.57% [2/352]
SOE Bluetooth 29.87% [138/462] 70.13% [324/462]
SOE Wi-Fi 99.72% [351/352] 0.28% [1/352]

110

Network Sensing with application to IEEE 802.11 communication systems - Jesus Roldan Diaz, 2010

TABLE IV
CLASSIFICATION RESULTS
MULTI-NETWORK ENVIRONMENT

Input Classification into Classification into
Classifier Network Wi-Fi multi-slot
Bluetooth
Pocket Bluetooth predominant 17.10% [133/778] 82.90% [645/778]
Pocket Wi-Fi predominant 86.07% [315/366] 13.93% [51/366]
Pocket Balanced 41.34% [210/508] 58.66% [298/508]
Perceptron Bluetooth predominant 17.22% [134/778] 82.78% [644/778]
Perceptron Wi-Fi predominant 86.07% [315/366] 13.93% [51/366]
Perceptron Balanced 41.53% [211/508] 58.47% [297/508]
LMS Bluetooth predominant 37.79% [294/778] 62.21% [484/778]
LMS Wi-Fi predominant 90.16% [330/366] 9.84% [36/366]
LMS Balanced 56.89% [289/508] 43.11% [219/508]
SOE Bluetooth predominant 36.89% [287/778] 63.11% [491/778]
SOE Wi-Fi predominant 90.71% [332/366] 9.29% [34/366]
SOE Balanced 56.10% [285/508] 43.90% [223/508]

Given that construction of the decision hyperplane is a one-
time occurrence, algorithms timely performance was not
deemed relevant in the context of this work. Once features
are extracted, classification is automatically computed
through a scalar product of feature vector and weight vector
w, the normal of the above-mentioned hyperplane.

VI. DISCUSSION OF RESULTS AND FUTURE DIRECTIONS

As described in the above Section, network classification of
Wi-Fi vs. Bluetooth was attempted based on the definition
of two features: the maximum packet duration between two
silence gaps, and duration of silence gaps. Four different
classification algorithms were used: Pocket, Perceptron,
LMS, and SOE

Results of classification showed that:

1) For the Wi-Fi vs. single-slot Bluetooth case (Table II),
all proposed classifiers achieved perfect classification into
the two classes, when one traffic stream (either Wi-Fi or
Bluetooth) was given as input to the classifier. This result
shows that the selected features were appropriate since they
completely identify these two classes.

2) For the Wi-Fi vs. multi-slot Bluetooth case (Table III),
classification is not as perfect as in the previous case, and
depends upon classification algorithm as well as input data
to the classifier. Among all the proposed classification
strategies, Pocket and Perceptron emerge as the most
successful and reliable, leading to a correct classification
rate greater than 98%.

3) Data in Table IV speak to the adequacy of the
classifiers in environments with heavy predominance of one
technology, by their ability to reveal both technologies in
each case. This ability is shown by comparing results of
Pocket reported by Tables III and IV. As shown by tables,

only Pocket and Perceptron are capable of performing a
reliable classification. Note that these classifiers were
always capable of providing as output, the pre-dominant
network, and moreover, the rate of classification follows the
trend in the proportion between both technologies packets in
the observation sequence. When the traffic flows are
balanced, the classifier seems to follow a “50-50” “win-
win” rule, by outputting balanced classification decisions.

Future work will focus on investigating whether the selected
features extend beyond the present case of two technologies
in the ISM band. In particular, the AIR-AWARE project
will proceed by incorporating the IEEE 802.15.4 technology
(ZigBee) [11] into the set of possible classes. Preliminary
investigations, based on the analysis of the 802.15.4
standard specifications, show that SIFS is also defined for
ZigBee networks, with a nominal value of 192us [11] in the
ISM 2.4 GHZ band. This value compared to extracted
features on this paper experiments, should allow the
classification algorithms to obtain good separation for all
three classes (Wi-Fi vs. Bluetooth vs. ZigBee).

REFERENCES

[1] IEEE Std 802.11 - 2007, IEEE Standard for
Information technology — Telecommunications and
information exchange between systems — Local and
metropolitan area networks — Specific requirements —
Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, 12 June 2007

[2] IEEE Std 802.15.1 — 2005, IEEE Standard for
Information technology — Telecommunications and
information exchange between systems — Local and
metropolitan area networks — Specific requirements —
Part 15.1: Wireless medium access control (MAC) and
physical layer (PHY) specifications for wireless
personal area networks (WPANS), 14 June 2005.

[3] Gandetto M. and Regazzoni C., “Spectrum Sensing: A
Dsitributed Approach for Cognitive Terminals,” /IEEE
Journal on selected areas in communications, Vol.25
(3), 2007.

[4] http://netresearch.ics.uci.edu/kfujii/jpcap/doc/

[5] http://en.wikipedia.org/wiki/Monitor mode/

[6] http://www.radiotap.org/

[7] Duda R.O., Hart P. E., and Stork D.G., Pattern
classification, 2° Ed., Wiley-Interscience, 2004.

[8] Theodoridis S. and Koutroumbas K.,
recognition, 4° Ed., Elsevier Inc., 2009.

[9] Gallant S. 1., Perceptron-Based Learning Algorithms,
IEEFE Transactions on neural networks, Vol. 1(2), 1990.

[10]Ho Y.H. and Kashyap R.L. “An algorithm for linear
inequalities and its applications,” IEEE Transactions on
Electronic Computers,Vol.14(5), 1965.

[11]IEEE Std 802.15.4 — 2006, IEEE Standard for
Information technology — Telecommunications and
information exchange between systems — Local and
metropolitan area networks — Specific requirements —
Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs), 8
September 2006.

Pattern

111

