
FACOLTÀ DI INGEGNERIA DELL’INFORMAZIONE,
INFORMATICA E STATISTICA

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA

TESI DI LAUREA DI PRIMO LIVELLO

Automatic recognition of networks
based on energy detection

Laureando Relatore

Luca Milani Prof.ssa Maria-Gabriella Di Benedetto

ANNO ACCADEMICO 2012/2013





Non credete a ciò che arriva senza sacrificio.
Non fidatevi, è un’illusione.

R.B.





Candidato: Luca Milani
Matricola: 1410986
Relatore: Prof.ssa Maria-Gabriella Di Benedetto

Part of this thesis has been done in CTVR / The Telecommunications Research
Centre, "Trinity College", Dublin 2, Ireland during the month of "Short Term
Scientific Mission" (STSM) "COST Action IC0902" under the supervisions of the
Professor Luiz DaSilva and PhD student Paolo Di Francesco.

First I really would like to thank my advisor Professor Maria-Gabriella Di
Benedetto for giving me this opportunity and for the support provided during this
months. I would like to sincerely thank all of the members of CTVR who I met and
interacted with during my stay at Trinity College of Dublin. In particular, I would
like to thank Paolo Di Francesco for his patience and Professor Luiz DaSilva for
accepting me in his research group, it was a wonderful experience that made me
grow and it will remember forever.

Un ringraziamento speciale va a tutta la mia famiglia che mi ha supportato
e incoraggiato verso questo primo traguardo. Cercherò sempre di ripagare la loro
fiducia con impegno, dedizione ed educazione, nello studio e soprattutto nella vita.
Ringrazio anche tutte quelle persone che hanno lasciato un segno indelebile in me,
che mi hanno fatto crescere e mi hanno reso migliore.

Novembre 2013

iv



ABSTRACT

English Version
This thesis outlines the work undertaken by the candidate, Luca Milani, at the
"ACTS" lab, Department of Information, Electronics and Telecommunication En-
gineering (DIET), "Sapienza, University of Rome", Italy under the supervision
of the Professor Maria-Gabriella Di Benedetto and during the month of "Short
Term Scientific Mission" (STSM) "COST Action IC0902" at "Trinity College of
Dublin" (Ireland) under the supervisions of the Professor Luiz DaSilva and PhD
student Paolo Di Francesco.

The thesis project consists in designing a network recognition system in the 2.4
GHz ISM band based on MAC sub-layer feature. Through a simple implementation
of an energy detector, it is possible to scan the ISM band in order to extract the
frame pattern in time domain. This plain process is able to link a particular energy
profile to one expected network. The final goal is to capture wireless signals (in
particular Wi-Fi and Bluetooth) and to use the energy profile pattern for automatic
recognition of the networks. The work is a part of AIR-AWARE Project, initiative
of the ACTS lab that involves a large group of students and researchers.
The thesis is articulated in seven sections and two appendixes: I start with the
work summary and purpose in the first chapter, then I continue with the networks
standards (chapter 2) and the energy detection theory (chapter 3). Chapters 4 and
5 regard the devices used in this work, respectively the Universal Software Radio
Peripheral (USRP) and the spectrum analyzer. Finally chapters 6 and 7 discuss
about core researches and experiments with future work references.
In this work I considered three different scenarios: as a first experiment, I captured
the data when only the wifi is active in the environment. As a second experiment
I captured only Bluetooth signals. Finally I tried to recognize both Bluetooth and
Wifi signals in a mixture scenario where a network was predominant on the other.
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Italian Version
Questa tesi descrive il lavoro svolto dal candidato, Luca Milani, presso il laboratorio
"ACTS", "Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomu-
nicazioni (DIET)" , de "La Sapienza, Università di Roma", sotto la supervisione
della Professoressa Maria-Gabriella Di Benedetto e durante il mese di "Short Term
Scientific Mission" nell’ambito del progetto "COST Action IC0902" al "Trinity
College" di Dublino (Irlanda) sotto le supervisioni del professore Luiz DaSilva e del
dottorando Paolo Di Francesco.

Il progetto di tesi consiste nella progettazione di un sistema di riconoscimento di
rete nella banda ISM a 2,4 GHz basato sul substrato MAC. Attraverso una semplice
implementazione di un rivelatore di energia, è possibile la scansione della banda
ISM al fine di estrarre un diagramma energetico nel dominio temporale. Questo
tipo di processo è in grado di collegare un particolare profilo di energia ad una
specifica tecnologia wireless. L’obiettivo finale è quello di catturare i segnali senza
fili (in particolare connessioni Wi-Fi e Bluetooth) e di utilizzare il modello appena
esposto per il riconoscimento automatico delle reti. L’opera fa parte del progetto AIR-
AWARE, iniziativa del laboratorio ACTS che coinvolge un folto gruppo di studenti
e ricercatori. La tesi si articola in sette sezioni e due appendici: il primo capitolo
espone il progetto e gli obiettivi per poi continuare con gli standard delle reti wireless
considerate (capitolo 2) e la teoria dell’energy detection (capitolo 3) . I capitoli 4 e
5 riguardano i dispositivi utilizzati in questo lavoro, rispettivamente l’Universal
Software Radio Peripheral (USRP) e l’analizzatore di spettro. Infine i capitoli 6 e 7
discutono delle ricerche e degli esperimenti svolti, integrando delle idee riguardo
futuri studi. In questo lavoro vengono considerati tre diversi scenari: come primo
esperimento, le catture vengono eseguite quando solo il Wi-Fi è attivo nell’ambiente.
In un secondo esperimento vengono considerati solo i segnali Bluetooth. Infine viene
tentato il riconoscimento ibrido sia di segnali Bluetooth che di segnali Wi-Fi, in uno
scenario in cui una rete predomina sull’altra.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

Nowadays a large number of devices use to connect to networks using
radio waves, and this number of devices is continuously growing. In gen-
eral it is more and more likely that other devices are operating in a certain
frequency band where the cognitive radio wants to work. In order not to
interfere, or to exploit the unused frequency ranges, or just to be aware of the
radio environment in which it is set, a cognitive radio has to discover if other
wireless networks are active in that moment in that place. The presented
work aims to evaluate this issue by proposing a method for automatic recog-
nition and classification of wireless technologies. The considered frequency
band is the Industrial Scientific and Medical (ISM) 2.4 GHz band and the
considered networks are Bluetooth IEEE 802.15.1 and Wi-Fi IEEE 802.11.
ISM 2.4 GHz band is also used by many wireless mice and keyboards,
cordless Wi-Fi phones and also by cameras for security closed-circuit TVs.
Moreover, common interference at 2.4 GHz band comes from microwave
ovens and DECT cordless phones (operating at 1.9 GHz); these can compro-
mise the quality of the radio link of the other technologies, and they should
be considered by the cognitive radio recognition system. The classification
is a fundamental aspect for a cognitive radio device because it may be the
initial step to be able to construe the surrounding environments.
The proposed approach consists of exploiting features of the Media Access
Control (MAC) sub-layer of the various wireless technologies. Every net-
work has its own particular MAC behavior, as defined in the standard that
describes each of them. Through the study of these standards, a peculiar
MAC behavior can be identified for each type of network, and a recognition
and classification process can be carried out by evaluating these features. In
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Luca Milani CHAPTER 1. INTRODUCTION

particular, all it need is a time-domain frame diagram. This diagram shows
the presence versus absence of a frame in every instant with no attention
to the content of these frames. In fact, the packet informations are not rele-
vant for the scope of this recognition, the only important thing is the frame
pattern, a medium for revealing the technology that is currently in use, and
thus the networks recognition. This means that there can be a maximum
or minimum duration for certain types of frames, or even a fixed duration.
The same rules can be determined for the silence gaps that fall between the
frames. Moreover the standard may specify a regular and predetermined
transmission of a frame (usually these are control frames needed to ensure
the correct system functionalities), or the transmission of acknowledgment
frames after the reception of data frames. All these rules are specific for
every single technology, i.e. each different network may present a MAC
behaviour that is proper and peculiar of that technology.
In order to obtain the time-domain frame exchange diagram, all it need
is a simple device: an energy detector (ED). Using the energy detection
theory, the ED can compute the short-term energy that is present on the air
interface. After defining a threshold value, all the consecutive short-term
energy values that are higher than the threshold can be considered as frames.
In this way, the frame diagram can be formed using energy detection [1].

1.2 AIR-AWARE Project

The work undertaken is a part of AIR-AWARE Project, the goal of this
project is to implement a classification method based on information com-
ing from protocol layers above the physical one (PHY). In particular, the
objective is to recognize MAC sub-layer specific features for each of the ISM
2.4GHz band operating technologies. The AIR-AWARE module (Fig.1.1) was
conceived as a generic device that provides information about the energy
level in the whole ISM Band bandwidth. Through it we will be able to define
presence or absence of a frame in real time. A software process analyzes the
frame pattern provided by the energy detector and it should be included to
the module.

Fig. 1.1: AIR-AWARE MODULE.

2
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1.3 Overview

The thesis is articulated in seven sections and two appendixes: I start
with the work summary and purpose in the first chapter, then I continue
with the network standards (chapter 2) and the energy detection theory
(chapter 3). Chapters 4 and 5 regard the devices used in this work, respec-
tively the Universal Software Radio Peripheral (USRP) and the spectrum
analyzer. Finally chapters 6 and 7 discuss about core researches and experi-
ments with future work references.
In this work I considered three different scenarios: as a first experiment,
I captured the data when only the wifi is active in the environment. As
a second experiment I captured only Bluetooth signals. Finally I tried to
recognize both Bluetooth and Wifi signals in a mixture scenario where a
network was predominant on the other.

3



CHAPTER 2

NETWORK STANDARDS

As first, this chapter starts with a general description of the considered
two standards (IEEE 802.15.1 and IEEE 802.11), in both of them it is possible
to identify some main features that enclose many types of transmissions or
different versions. In some cases it will be simple to extract a feature directly
from the standard, while in other cases it will be useful to investigate the
captures in order to note a particular behavior.

2.1 The Bluetooth technology
IEEE 802.15.1

Fig. 2.1: Bluetooth logo.

The Bluetooth technology (Fig. 2.1) is defined in the IEEE Standard
802.15.1 [3], that describes the specifications for the MAC and PHY layers,
and it is used for Wireless Personal Area Networks (WPANs). This tech-
nology is available in quite every wireless device, such as cellular phones,
laptops and netbooks, and for this reason it is very common to find an active
Bluetooth device in many places. Bluetooth devices can communicate in the
context of a piconet, that can be composed by 2-8 devices, all synchronized to
a common clock and all sharing the same hopping sequence. In the piconet

4
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there is one device called master and the other devices are called slaves (up
to 7). The master is the centre of the topology, that is to say that every slave
communicates directly only with the master; in this way a communication
between two slaves always passes through the master. The band used is the
whole ISM 2.4 GHz band: from 2.4 to 2.4835 GHz. In fact the bandwidth
of the signal is of 1 MHz, but the whole band is exploited by using the
Frequency Hopping Spread Spectrum (FHSS) technique (Fig. 2.2 - 2.3).

Fig. 2.2: Bluetooth FHSS technique.

The ISM band is therefore divided into 79 channels of 1 MHz each. A
combination of Gaussian Frequency Shift Keying (GFSK) and Phase Shift
Keying modulation is used. Note that we took as reference the IEEE Standard
802.15.1 - 2005, that is the last IEEE available standard and that describes
the version 1.2 of Bluetooth and some features of the version 2.0.

The version 2.0 of the Bluetooth Core Specification was released in 2004.
The main difference is the introduction of an Enhanced Data Rate (EDR) for
faster data transfer. The nominal rate of EDR is about 3 Mbit/s, although the
practical data transfer rate is 2.1 Mbit/s. EDR uses a combination of GFSK
and Phase Shift Keying modulation (PSK) with two variants, ⇡/4-DQPSK
and 8DPSK. EDR can provide a lower power consumption through a re-

5
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Fig. 2.3: FHSS technique in a simplified Short Energy Diagram.

duced duty cycle. The specification is published as "Bluetooth v2.0 + EDR"
which implies that EDR is an optional feature. Aside from EDR, there are
other minor improvements to the 2.0 specification, and products may claim
compliance to "Bluetooth v2.0" without supporting the higher data rate.

Very important for the our scope is the division of the time axis into
time slots. A packet can last an odd number of time slots; in particular, there
can be 1-time slot packets, 3-time slots packets and 5-time slots packets. A
communication between the master device and a slave device is usually
composed by alternate packets (one from master and one from slave), since
each device waits for a "return packet" (at least an acknowledgment) after
sending a packet. Following these rules, imposed by the Standard, it is clear
that a Bluetooth MAC packet exchange pattern is characterized by packets
that start every time slot duration, or at multiples of this value, if consider-
ing the multi-slot packets. Furthermore, many acknowledgment packets are
expected; the "NULL" packet is the one used for acknowledgment, and it
has a fixed length of 126 bits, that corresponds to a fixed duration of 126 µs
considering the bit rate of 1 Mb/s.

The other packets have also minimum and maximum durations, im-
posed by the Standard. It was decided to focus attention on the NULL
packet and the packet length. In fact, the packet length during a transmis-
sion appears sufficiently concentrated around the maximum value admitted
by the standard (in particular for the version 2.0). Three values will be pre-
dominant that correspond to the maximum size of the packages 1, 3 and 5
slots provided by the Standard. In particular the following table summarizes

6
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type and duration of all possible data packets.

Bit Rate: 1 Mb/s (ver 1.2) 2.1 Mb/s (ver 2.0)
NULL(ACK): 126 µs 60 µs
OneSlotFrame: 126 to 366 µs 174 µs (max value)
ThreeSlotFrame: 1250 to 1622 µs 772 µs (max value)
FiveSlotFrame: 2500 to 2870 µs 1367 µs (max value)

It is important to note that a Bluetooth communication system is di-
mensioned considering a bandwidth of 1 MHz in a single instant. By using
an Energy Detector, the hopping sequence is unknown, and therefore it is
impossible to know to which channel to be tuned to in every instant. In
this condition, a simple way to catch the energy of all the packets that the
devices send and receive is to sense the entire ISM 2.4 GHz band, i.e. all the
79 channels; by doing this, however, the noise power will be much higher,
and this must be taken into account in the phase of determination of the
threshold for the high versus low energy value. A possible alternative is
to sense a lower bandwidth, in order to decrease the sensed noise power.
In this way, however, all the packets sent in channels outside the sensed
band are not caught. Considering that the "choice" to use a single channel
has a uniform probability density, i.e. in mean there are no channels that
are chosen more than others, sensing a lower bandwidth can still be a good
trade-off between considered bandwidth and "packet loss" (in sensing term)
[1].

2.2 The Wi-Fi technology
IEEE 802.11

Fig. 2.4: Wi-Fi logo.

7
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Wi-Fi is a popular technology that allows an electronic device to ex-
change data or connect to the internet wirelessly using radio waves (Fig.
2.4). Many devices can use Wi-Fi, e.g. personal computers, video-game
consoles, smartphones, some digital cameras, tablet computers and digital
audio players. These can connect to a network resource such as the Internet
via a wireless network access point. Such an access point (or hotspot) has
a range of about 20 meters indoors and a greater range outdoors. Hotspot
coverage can comprise an area as small as a single room with walls that
block radio waves, or as large as many square miles achieved by using
multiple overlapping access points.

The Wi-Fi technology is defined in the IEEE Standard 802.11; in par-
ticular the reference standard taken into account is the revised version of
2007 [2]. There are different types of physical layers, each of them with a
different used band, modulation transmission rates and coding; this results
in different 802.11 Standard version (802.11a, b, c, d, e, f, g, h, i, j, k, n, p,
r, s, v, w, y). The 802.11 b / g / n versions are considered in this work. A
Wi-Fi system consists basically in an Access Point (AP) to which single client
devices are connected, and that gives access to a wider network (usually
Internet); in this way a Wireless Local Area Network (WLAN) is created.
The physical layer of a Wi-Fi network is different depending on the Stan-
dard version, of course, but obviously even for the supported bitrate, whose
value can be variable. For example, 802.11b uses the ISM 2.4 GHz band, with
Direct Sequence Spread Spectrum (DSSS); possible bitrates are 1, 2, 5.5 and
11 Mb/s.

The modulations used are the following:

• Differential Binary Phase Shift Keying (DBPSK) for a bitrate of 1 Mb/s;

• Differential Quadrature Phase Shift Keying (DQPSK) for a bitrate of 2
Mb/s;

• Code Complementary Keying (CCK) for a bitrate of 5.5 and 11 Mb/s.

Different InterFrame Spaces (IFSs) are also defined. In particular, rele-
vant for the purpose of the project, is the Short InterFrame Space (SIFS), the
shortest of the IFSs. It is important for us because it is used before the trans-
mission of an acknowledgment (ACK) packet or a CTS packet. It is defined
as the time duration between the end of the last symbol of the previous
packet and the beginning of the first symbol of the following packet (Fig.
2.5). Since the data-ACK packet exchange appears to be effectively really
used, based on real traffic analysis in a scenario with medium to high traffic,
the SIFS, among the different IFSs, is the most likely to occur. This is very
important because it has a nominal value of 10 µs.

8
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Fig. 2.5: Example of Wi-Fi packet diagram.

This value of 10 µs is important in this context because it is a silence
gap value that occurs very often in a Wi-Fi transmission and it is peculiar
of this technology, i.e. it characterizes this type of network. Thanks to this
peculiarity, it can be a good candidate for being a feature [1].
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CHAPTER 3

ENERGY DETECTION
THEORY

The most common methods for the recognition of signals use to leverage
the physical layer characteristics of the technologies. These approaches al-
low to detect the type of modulation employed through measuring certain
parameters of the received signal, but they often require a specific ad-hoc
technology to work. In order to evaluate the problem, we have chosen to fo-
cus on higher standard characteristics than physical. Just above the physical
layer in fact, there is the MAC level, where each wireless technology defines
the structure of the packages.

This chapter aims to present the spectrum sensing method used to scan
the captures. The energy detection theory was used because it provides a
clean result in obtaining the Short Energy Diagram (SED) in time, thanks to
this diagram I was able to analyze to presence vs the absence of the frames.
The energy detector is known as a suboptimal detector, which can be applied
to detect unknown signals as it does not require a prior knowledge on the
transmitted waveform as the optimal detector does. The Fig. 6.7 shows what
is the SED, the first 3D plot provides the Energy versus both the time and
the frequency while we are interested to visualize the energy versus time
considering the whole bandwidth that we have. Conceptually we only need
a rotation of the figure with a compaction of all frequency contributions.

For this reason the next sections present a mathematical review of the
Energy Detection Theory and a synthesis about the Fast Fourier Transform
used for this purpose.

10
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Fig. 3.1: 3D Energy Diagram.
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3.1 Neymar-Person approach

The Energy Detector (ED) is a spectrum sensing method of analysis in the
time domain that allows to obtain estimates on the utilization of spectrum
in a very short time, being based on simple operations carried out in the
time domain [4]. The ED is well known as a result of decision theory to the
detection problem of random signals immersed in Additive White Gaussian
Noise (AWGN). This approach, based on hypothesis testing, allows to solve
problems of binary decision (presence or absence of valid signal) through
the observation of received samples.

Thus ED is a non-coherent detection method that uses the energy of the
received signal to determine the presence of primary signals. This simple
method is able to gather spectrum- occupancy information quickly. How-
ever, its sensing capability is vulnerable to noise.

It is assumed a set of signal samples statistically independent:

(x[0], x[1], ... , x[N � 1]) (3.1)

On these data, it applies a function T (x) that is able to highlight a param-
eter for discriminating the decision. The determination of the function T (x)
and the decision threshold are the core issues of this approach. In order to
detect the valid signal immersed in AWGN, the sampled received signal,
X[n] will have two hypotheses as follows:

H1 : Y [n] = X[n] +W [n] V alid signal (3.2)

H0 : Y [n] = W [n] Noise floor (3.3)

n = 1, 2, ... , N (3.4)

Where N is the number of samples. The noise W [n] is assumed to be
additive white Gaussian (AWGN) with zero mean and variance �2

w

. X[n] is
the useful signal and it is assumed to be a random Gaussian process with
zero mean and variance �2

x

.
Hence it’s possible to formulate the hypothesis as follows:

H1 : N (0,�2
x

+ �2
w

) (3.5)

H0 : N (0,�2
w

) (3.6)

The signal detection through the Neymar-Person (NP) approach consists
in a comparison between L(x) and the threshold �:
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L(x) = p(x;H1)

p(x;H0)
> � (3.7)

where p(x;H1) and p(x;H0) are the probability density functions asso-
ciated to x when H1 or H0 is true. After choosing the decision of a certain
false alarm probability (FA), the calculation of the threshold using NP passes
through the evaluation of the following integral:

P
FA

=

Z

x:L(x)>�

p(x;H0) dx > � (3.8)

Thus L(x) becomes:

L(x) =

1

[2⇡(�2
x

+ �2
w

)]

N

2

e
�

1

2(�2
x

+ �2
w

)

P
N�1
n=0 x

2[n]

1

(2⇡�2
w

)

N

2

e
�

1

2�2
w

P
N�1
n=0 x

2[n]

(3.9)

After making the logarithm of the numerator and denominator and
collecting the n-independent terms, the test function T (x) may be expressed
as follows:

T (x) =
N�1X

n=0

x2[n] > �0 (3.10)

This version of ED calculates the signal samples energy only in a window
time of length N. If the signal is present (H1), T (x) should be above the
threshold, instead if the signal is absent (H0) the function should be under
the threshold. Interesting enough is to operate as follows:

T 0
(x) =

1

N
T (x) =

1

N

N�1X

n=0

x2[n] (3.11)

The performance of the NP approach can be extracted from the probabil-
ities of correct decision (P

D

) and false alarm (P
FA

). In fact:

T (x)

�2
x

+ �2
w

⇠ �2
N

H1 case (3.12)
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T (x)

�2
w

⇠ �2
N

H0 case (3.13)

In both cases the sum of variable squares gives a �2 (Chi-squared) distri-
bution.

X
⌫

(x) =
1

2

⌫

2
�(

⌫

2 )
x

⌫

2�1 e�
x

2 with x > 0 (3.14)

The probabilities become:

P
FA

= P
r

{T (x) > �0;H0} = Q
�

2
N

⇣ �0

�2

⌘
(3.15)

P
D

= P
r

{T (x) > �0;H1} = Q
�

2
N

⇣ �0

�2
+ �2

s

⌘
(3.16)

Dividing the argument of Q (P
D

) by the noise variance �2 and defining
�00 = �0/�2, P

D

becomes:

P
D

= P
r

{T (x) > �0;H1} = Q
�

2
N

 
�00

�

2
s

�

2 + 1

!
(3.17)

where SNR =

�2
s

�2

Thanks to a large N and to the central limit theorem, the sum of the
variable squares tends to assume a Gaussian distribution:

T (x) ⇠ N (N�2
w

, 2N�4
w

) H1 case (3.18)

T (x) ⇠ N (N(�2
w

+ �2
x

), 2N(�2
w

+ �2
x

)

2
) H2 case (3.19)

Thus:

P
FA

= Q

 
� �N�2

wp
2N�4

!
(3.20)

P
D

= Q

 
� �N(�2

w

+ �2
x

)p
2N(�2

w

+ �2
x

)

2

!
(3.21)
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For a certain value of the threshold, once set N and the signal vari-
ances, the previous formulas provide the so-called ROC (Receiver Operating
Curve) that characterizes the performance of receivers. Later in this work it
will be discussed the choices of the thresholds (chapter 6).
Using the formula of the energy detector just shown, it was decided to
define the function of short-term energy (E

N

).

E
N

(v) =

NX

i=1

|v
i

|2 · T
s

(3.22)

Where N is the time length to calculate the energy, v
i

is the i voltage
sample inside the consider time window and T

s

is the sample period.

The energy detector is known as a suboptimal detector, which can be applied
to detect unknown signals as it does not require a prior knowledge on the
transmitted waveform as the optimal detector does. Fig. 3.2 depicts block-
diagram of an energy detector. The ADC is used to convert the received
signal to the digital domain and it corresponds to two different devices in
this work. Then the square magnitude of the digitized signal is calculated
by using the Fast Fourier Transform (FFT) and magnitude square function.
To make the measurement more accurate, N numbers of samples is taken
and the average value of the samples is used to make the decision whether
signal is present or not by comparing it with the threshold [5] [6].

Fig. 3.2: Block diagram of an energy detector.

3.2 Fast Fourier Transform (FFT)

A fast Fourier transform (FFT) is an algorithm to compute the discrete
Fourier transform (DFT) and its inverse. A Fourier transform converts time
(or space) to frequency and vice versa; an FFT rapidly computes such trans-
formations. An FFT computes the DFT and produces exactly the same result
as evaluating the DFT definition directly; the only difference is that an FFT
is much faster.
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Let x0, ...., xN�1 be complex numbers. The DFT is defined by the formula:

X
k

=

N�1X

n=0

x
n

e�j2⇡ n

N k = 0, ... , N � 1. (3.23)

Evaluating this definition directly requires N2 operations: there are
N outputs X

k

, and each output requires a sum of N terms. An FFT is
any method to compute the same results in N logN operations. To illus-
trate the savings of an FFT, consider the count of complex multiplications
and additions. Evaluating the DFT’s sums directly involves N2 complex
multiplications and N(N � 1) complex additions. The well-known radix-2
Cooley-Tukey algorithm, for N a power of 2, can compute the same result
with only (N/2) log2(N) complex multiplications (ignoring simplifications
of multiplications by 1 and similar) and N log2(N) complex additions. In
practice, actual performance on modern computers is usually dominated
by factors other than the speed of arithmetic operations and the analysis
is a complicated subject, but the overall improvement from N2 to N logN
remains [7].

3.2.1 Cooley-Tukey algorithm

By far the most commonly used FFT is the Cooley-Tukey algorithm. This
is a divide and conquer algorithm that recursively breaks down a DFT of
any composite size N = N1N2 into many smaller DFTs of sizes N1 and N2,
along with N multiplications by complex roots of unity traditionally called
twiddle factors. The most well-known use of the Cooley-Tukey algorithm
is to divide the transform into two pieces of size N/2 at each step, and is
therefore limited to power-of-two sizes, but any factorization can be used
in general. Although the basic idea is recursive, most traditional implemen-
tations rearrange the algorithm to avoid explicit recursion. Also, because
the Cooley-Tukey algorithm breaks the DFT into smaller DFTs, it can be
combined arbitrarily with any other algorithm for the DFT.
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CHAPTER 4

SOFTWARE DEFINED RADIO

This chapter introduces the Software Defined Radio (SDR) and the Cog-
nitive Radio purpose in detailed way. In particular it describes the Universal
Software Radio Peripheral (USRP) and two kind of software (GNU Radio
and Iris) able to implement a radio through the USRP. This instrument will
be one of the main devices used in this work in order to capture the signal
in the environment.

4.1 Definition

Software Radio attempts to create a flexible platform by using software
instead of traditional hardware to perform operations on signals. The ideal
SDR platform would use as little hardware as possible and let software deal
with all of the processing. An ideal receiver might have just an antenna
connected to an ADC. Samples would then be read from the ADC and soft-
ware would handle all signal processing. There are many benefits to using
software to process signals. Software is quick to compile and load, which
gives iterative development a much higher cycle rate. Researchers and de-
velopers who are looking to experiment with different filter approaches can
quickly prototype solutions and have real world results using SDR. Software
that is developed for signal processing can easily be shared and adapted by
others, allowing new work to re-use existing code. This code re-use is easily
demonstrated by the GNU Radio community which is described in detail
later. Using commodity Personal Computers (PCs) is also advantageous
because platform developers can take advantage of the high performance
to economy ratio. Fast super-scalar processors with multiple cores are be-
coming commodity resources. This make high power computing resources
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available at a good price. Although specific signal processing hardware may
be faster, a general purpose software solution has a place in many radio
applications. SDR has advantages to manufacturers because they only need
to produce and support one hardware platform which can cut development
costs. For service providers using SDR, they can quickly update and change
their network with little hardware change. End users of SDR products will
be able to communicate efficiently and have the most up to date features
without having to buy a new hardware platform each time. The flexibility
and reconfigurability of SDRs make them prime targets for military and dis-
aster response applications. In these scenarios, an existing communication
infrastructure may be damaged or not even exist at all. Having a communi-
cation device that can adapt to changing communication conditions would
allow for better response and coordination [9].

4.1.1 Current uses of SDR

• Military uses

• Civilian disaster uses

• Amateur radios

• Home uses

4.1.2 Future uses of SDR

• Cell phones

• Wi-Fi

• Entertainment distribution

• Public Safety

• Broadcasting

• Digital Radio

• Digital Television

4.2 Cognitive Radio

The ability to reconfigure a communication network based on environ-
mental conditions is the key to the field of Cognitive Radio. SDRs give the
flexibility to change the underlying communication blocks used, while cog-
nitive radios evaluate the operating environment and initiate the changes in
the radio to maximize the goals of the radio. Of particular interest and one
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of the goals of the Cognitive Radio community is dynamic spectrum access.
With more wireless technologies being developed, the available spectrum
is becoming more and more limited. However the usage of the spectrum
varies greatly with time and location. It is of great interest to primary users
and secondary users of the spectrum on how to effectively share these un-
derutilized bands. However, analysis of some of those bands show major
under utilization. This suggest sample opportunity for new devices to make
use of the under utilized spectrum as long as they do not interfere with the
primary users of the spectrum.

There are two main approaches:

• Spectrum Overlay: dynamic spectrum access by secondary spectrum
users that exploits spatial and temporal spectral opportunities in a
non-interfering manner.

• Spectrum Underlay: a type of secondary spectrum access where ra-
diated power limits, power spectral density limits, or modulation
requirements on secondary transmissions protect primary users from
interference.

4.3 UNIVERSAL SOFTWARE RADIO PERIPHERAL

Fig. 4.1: Ettus Research logo.

The Universal Software Radio Peripheral (USRP) products are computer-
hosted software radios [8].
The USRP product family includes a variety of models that use a similar
architecture. A motherboard provides the following subsystems: clock gen-
eration and synchronization, FPGA, ADCs, DACs, host processor interface,
and power regulation. These are the basic components that are required for
baseband processing of signals. A modular front-end, called a daughter-
board, is used for analog operations such as up/down - conversion, filtering,

19



Luca Milani CHAPTER 4. SOFTWARE DEFINED RADIO

and other signal conditioning. This modularity permits the USRP to serve
applications that operate between DC and 6 GHz. USRPs connect to a host
computer through a high-speed USB or Gigabit Ethernet link, which the
host-based software uses to control the USRP hardware and transmit/re-
ceive data. The USRP family was designed for accessibility, and many of the
products are open source. The board schematics for select USRP models are
freely available for download and all USRP products are controlled with the
open source UHD driver.

The original version of the USRP, developed by Matt Ettus (Fig. 4.1), was
meant to be a simple and flexible platform for software radios. It contains
ADCs, DACs, and a FPGA which can be programmed to do some signal
processing and is used to implement the Digital Down Converter (DDC)
block. The USRP also contains a USB2 controller that is used to send and
receive samples from the computer. Fig. 4.2 shows a high level representation
of the USRP.

Fig. 4.2: USRP2 block diagram.

Daughterboards act as a Radio-Frequency (RF) front-end capable of
tuning to different bands depending on the Daughterboard used. A daugh-
terboard down converts a signal to an Intermediate Frequency (IF) that
the ADC can handle. There are a variety of daughterboards for different
bands, such as the XCVR2450 for frequencies 2.4-2.5GHz and 4.9-5.9GHz.
On-board ADCs are 12-bit Analog Devices ADCs with a sample rate of 64
MS/s. The DACs are 14-bit and operate at 128 MS/s. The complex samples
are composed of 16-bit In-phase and 16-bit Quadrature samples for a total
of 4 bytes per sample. These samples must be transferred to the computer
over the USB2 link for further processing by the host computer. The USB2
specification has a maximum rate of 60 MB/s. However, in real world tests
this maximum is not achieved for sustained transfers. The USRP is limited
to transferring at most 32 MB/s over the USB2 link. This means we must
decimate the signal by at least a factor of 8 in order to keep a constant
stream of samples. Decimation is achieved by DDCs implemented in the
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FPGA. These DDCs center the signal at 0 and perform sample decimation.
This decimation rate can be controlled by initialization parameters when
interfacing with the USRP using software. A minimum decimation of 8 of
64 MS/s gives us 8 MS/s (complex samples), which gives us an equivalent
sampling window of 8 MHz, i.e. less than 8 bluetooth channels.
This limitation led to choosing the USRP2 for multi-channel decoding [9].

Fig. 4.3: USRP N210.

The USRP2 released by Matt Ettus is a more powerful version of the
USRP. The design is similar to the USRP and is compatible with the original
daughterboards. Changes include using ADCs capable of 14-bit 100 MS/s,
DACs capable of 16- bit 400 MS/s, and a Gigabit Ethernet (GigE) link instead
of USB2. GigE has a maximum transfer rate of 125 MB/s which is equivalent
to about 30 MS/s. Thus, the USRP2 has a sampling window maximum of
25 MHz when using a decimation rate of 4. This sampling window is wide
enough to cover about 22 consecutive IEEE 802.15.1 channels in the 2.4 GHz
band. Although there are 16 total channels in the ISM band, using the USRP2
is a good start to seeing the power of SDR. As technology improves, a SDR
capable of sampling the entire band of bluetooth channels is a possibility.

In this work I used the USRP N210 (Fig. 4.3) with a XCVR2450 daugh-
terboard mounted inside (Fig. 4.4). It is a high-performance transceiver
intended for operation 2.4 GHz and 5.9 GHz range. In particular I’ll ob-
serve the 2.4 GHz ISM band in order to monitor as much as possible Wifi
and Bluetooth channels. The adopted antenna was a dual band 2.400-2.483
GHz and 4.9-5.8 GHz vertical antenna, with a gain of 3 dBi in the lower band.
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Fig. 4.4: Daughterboard XCVR24250.

4.4 GNU Radio

GNU Radio [10] is an open-source effort to create software that uses a
minimal hardware platform to implement a radio (Fig. 4.5). The project aims
to make SDRs easy to program and accessible to a larger group of users. The
community is active and new developments are constantly being released.

Fig. 4.5: GNU Radio logo.

A block based programming model is taken with GNU Radio. Different
signal processing blocks can be connected together in a signal processing
pipeline. These blocks can be composed of other blocks in a recursive fashion.
The ability to easily reuse existing code and swap blocks makes creating an
application with GNU Radio quick. Since processing logic is implemented
in software, to test changes a recompile is all that is needed. Blocks can
be written in C++ or Python. Normally C++ provides the simpler block
functionality and Python is used to compose and glue blocks together. In
order to interface the C++ blocks with Python, a C++ wrapper and interface
generator called SWIG is used. Using the combination of Python and C++
allows programmers to create logic that runs at the speed of compiled code,
while easily connecting these blocks with a scriptable language. Recently
GNU Radio has also added Multi-Core support and is able to thread differ-
ent blocks onto different processing units, taking advantage of the growing
number of multi-core computers. The community is constantly improving
and adding features to make development of projects using GNU Radio
even easier. Currently GNU Radio operates on data in a stream. Certain
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applications would be better suited if processed in a packetized manner.
This is one of the next areas of development for GNU Radio. Having the
software architecture to do signal processing is not useful without a way to
get real-world samples of the signal. Some users have tried with some suc-
cess to use the Analog to Digital Converters (ADCs) and Digital to Analog
Converters (DACs) built in to their sound cards. However the performance
and capabilities of these components severely limited the potential projects.
For this reason the GNU Radio community also created an open hardware
platform to interface with the world.

Fig. 4.6: Visualizing Bluetooth FHSS technique through GRC.

GNU Radio performs all the signal processing. You can use it to write
applications to receive data out of digital streams or to push data into dig-
ital streams, which is then transmitted using hardware. GNU Radio has
filters, channel codes, synchronization elements, equalizers, demodulators,
vocoders, decoders, and many other implemented blocks which are typically
found in radio systems (Fig. 4.6). More importantly, it includes a method
of connecting these blocks and then manages how data is passed from one
block to another. Extending GNU Radio is also quite easy; if you find a
specific block that is missing, you can quickly create and add it.

Since GNU Radio is software, it can only handle digital data. Usually,
complex baseband samples are the input data type for receivers and the
output data type for transmitters. Analog hardware is then used to shift the
signal to the desired centre frequency. That requirement aside, any data type
can be passed from one block to another - be it bits, bytes, vectors, bursts or
more complex data types.
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4.4.1 GNU Radio Companion

The acquisition process with the USRP is developed through the GNU-
Radio Software, in particular we used GNU Radio Companion (GRC) [11].
GRC is a graphical tool for creating signal flow graphs and generating flow-
graph source code, it is very intuitive and powerful thanks to the large
community that every day improves the project.
It allows users to construct a graphical representation of a flow-graph by
instantiating and inter-connecting blocks from the GNU Radio libraries.
Ever since its invention, GRC has attracted a lot of interest from academia,
research industry and hobbyist people; while at the same time, GRC has
significantly reduced the development-cycle time by easing flow-graph and
GUI generation and has greatly helped GNU Radio users in their under-
standing of the underlying GNU Radio framework/architecture by visualiz-
ing the underlying structure of interconnected DSP blocks.

4.4.2 Extending GNU Radio: Block Structure

Obviously it is possible to extend GNU Radio through writing personal
blocks that can be used both in GNU Radio and in GRC like a stand-alone
component to connect with the others. GNU Radio provides a useful wiki
website, where there are all the information about installing and extending
the software [12]. This section presents just an overview of a block structure
and it underlines the powerful and the simplicity in designing.

The work function

To implement processing, the user must write a "work" routine that reads
inputs, processes, and writes outputs.
An example work function implementing an adder in c++:

1 i n t work ( i n t noutput_items ,
2 g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &input_items ,
3 g r _ v e c t o r _ v o i d _ s t a r &output_items )
4 {
5 / / c a s t b u f f e r s
6 const f l o a t ⇤ in0 = r e i n t e r p r e t _ c a s t <const f l o a t ⇤>(

input_i tems [ 0 ] ) ;
7 const f l o a t ⇤ in1 = r e i n t e r p r e t _ c a s t <const f l o a t ⇤>(

input_i tems [ 1 ] ) ;
8 f l o a t ⇤ out = r e i n t e r p r e t _ c a s t < f l o a t ⇤>( output_items

[ 0 ] ) ;
9
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10 / / p r o c e s s d a t a
11 for ( s i z e _ t i = 0 ; i < noutput_items ; i ++) {
12 out [ i ] = in0 [ i ] + in1 [ i ] ;
13 }
14
15 / / r e t u r n produced
16 return noutput_items ;
17 }

Parameter definitions:

• noutput_items: total number of items in each output buffer.

• input_items: vector of input buffers, where each element corresponds
to an input port.

• output_items: vector of output buffers, where each element corre-
sponds to an output port.

Some observations:

• Each buffer must be cast from a void* pointer into a usable data type.

• The number of items in each input buffer is implied by noutput_items

• The number of items produced is returned, this can be less than nout-
put_items

IO signatures

When creating a block, the user must communicate the following to the
block:

• The number of input ports

• The number of output ports

• The item size of each port

An IO signature describes the number of ports a block may have and the
size of each item in bytes. Each block has 2 IO signatures: an input signature,
and an output signature.
Some example signatures in C++:

1 �� A block with 2 inputs and 1 output ��
2
3 gr_sync_block ( "my adder " , gr_make_io_signature ( 2 , 2 ,

s i z e of ( f l o a t ) ) , gr_make_io_signature ( 1 , 1 , s i ze of (
f l o a t ) ) )
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4
5 �� A block with no inputs and 1 output ��
6
7 gr_sync_block ( "my source " , gr_make_io_signature ( 0 , 0 ,

0 ) , gr_make_io_signature ( 1 , 1 , s i ze of ( f l o a t ) ) )
8
9 �� A block with 2 inputs ( f l o a t and double ) and 1

output ��
10
11 std : : vector < int > i n p u t _ s i z e s ;
12 i n p u t _ s i z e s . push_back ( s i ze of ( f l o a t ) ) ;
13 i n p u t _ s i z e s . push_back ( s i ze of ( double ) ) ;
14
15 gr_sync_block ( "my block " , gr_make_io_signaturev ( 2 , 2 ,

i n p u t _ s i z e s ) , gr_make_io_signature ( 1 , 1 , s i ze of (
f l o a t ) ) )

Some observations:

• Use gr_make_io_signature for blocks where all ports are homogenous
in size.

• Use gr_make_io_signaturev for blocks that have heterogeneous port
sizes.

• The first two parameters are min and max number of ports, this allows
blocks to have a selectable number of ports at runtime.

4.4.3 Block types

To take advantage of the gnuradio framework, users will create various
blocks to implement the desired data processing. There are several types of
blocks to choose from:

• Synchronous Blocks (1:1)

• Decimation Blocks (N:1)

• Interpolation Blocks (1:M)

• General Blocks (N:M)

Synchronous Block

The sync block allows users to write blocks that consume and produce
an equal number of items per port. A sync block may have any number of
inputs or outputs. When a sync block has zero inputs, its called a source.
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When a sync block has zero outputs, its called a sink. An example sync block
in c++:

1 # include <gr_sync_block . h>
2
3 c l a s s my_sync_block : public gr_sync_block
4 {
5 public :
6 my_sync_block ( . . . ) :
7 gr_sync_block ( "my block " ,
8 gr_make_io_signature ( 1 , 1 , s i ze of (

i n t 3 2 _ t ) ) ,
9 gr_make_io_signature ( 1 , 1 , s i ze of (

i n t 3 2 _ t ) ) )
10 {
11 / / c o n s t r u c t o r s t u f f
12 }
13
14 i n t work ( i n t noutput_items ,
15 g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &input_items ,
16 g r _ v e c t o r _ v o i d _ s t a r &output_items )
17 {
18 / / work s t u f f . . .
19 return noutput_items ;
20 }
21 } ;

Some observations:

• noutput_items is the length in items of all input and output buffers

• an input signature of gr_make_io_signature(0, 0, 0) makes this a source
block

• an output signature of gr_make_io_signature(0, 0, 0) makes this a sink
block

Decimation Block

The decimation block is another type of fixed rate block where the
number of input items is a fixed multiple of the number of output items.
An example decimation block in c++:

1 # include <gr_sync_decimator . h>
2
3 c l a s s my_decim_block : public gr_sync_decimator
4 {
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5 public :
6 my_decim_block ( . . . ) :
7 gr_sync_decimator ( "my decim block " ,
8 in_s ig ,
9 out_sig ,

10 decimation )
11 {
12 / / c o n s t r u c t o r s t u f f
13 }
14
15 / / work f u n c t i o n h e r e . . .
16 } ;

Some observations:

• The gr_sync_decimator constructor takes a 4th parameter, the decima-
tion factor.

• The user should assume that the number of input items = nout-
put_items*decimation.

Interpolation Block

The interpolation block is another type of fixed rate block where the
number of output items is a fixed multiple of the number of input items.
An example interpolation block in c++:

1 # include < g r _ s y n c _ i n t e r p o l a t o r . h>
2
3 c l a s s my_interp_block : public g r _ s y n c _ i n t e r p o l a t o r
4 {
5 public :
6 my_interp_block ( . . . ) :
7 g r _ s y n c _ i n t e r p o l a t o r ( "my i n t e r p block " ,
8 in_s ig ,
9 out_sig ,

10 i n t e r p o l a t i o n )
11 {
12 / / c o n s t r u c t o r s t u f f
13 }
14
15 / / work f u n c t i o n h e r e . . .
16 } ;

Some observations:

• The gr_sync_interpolator constructor takes a 4th parameter, the inter-
polation factor.
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• The user should assume that the number of input items = nout-
put_items/interpolation.

Basic Block

The basic block provides no relation between the number of input items
and the number of output items. All other blocks are just simplifications of
the basic block. Users should choose to inherit from basic block when the
other blocks are not suitable.
The adder revisited as a basic block in c++:

1 # include <gr_block . h>
2
3 c l a s s my_basic_block : public gr_block
4 {
5 public :
6 my_basic_adder_block ( . . . ) :
7 gr_block ( " another adder block " ,
8 in_s ig ,
9 out_s ig )

10 {
11 / / c o n s t r u c t o r s t u f f
12 }
13
14 i n t general_work ( i n t noutput_items ,
15 g r _ v e c t o r _ i n t &ninput_items ,
16 g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &

input_items ,
17 g r _ v e c t o r _ v o i d _ s t a r &output_items )
18 {
19 / / c a s t b u f f e r s
20 const f l o a t ⇤ in0 = r e i n t e r p r e t _ c a s t <const f l o a t

⇤>( input_i tems [ 0 ] ) ;
21 const f l o a t ⇤ in1 = r e i n t e r p r e t _ c a s t <const f l o a t

⇤>( input_i tems [ 1 ] ) ;
22 f l o a t ⇤ out = r e i n t e r p r e t _ c a s t < f l o a t ⇤>(

output_items [ 0 ] ) ;
23
24 / / p r o c e s s d a t a
25 for ( s i z e _ t i = 0 ; i < noutput_items ; i ++) {
26 out [ i ] = in0 [ i ] + in1 [ i ] ;
27 }
28
29 / / consume t h e i n p u t s
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30 this�>consume ( 0 , noutput_items ) ; / / consume p o r t 0
i n p u t

31 this�>consume ( 1 , noutput_items ) ; / / consume p o r t 1
i n p u t

32 / / t h i s �>consume_each ( n o u t p u t _ i t e m s ) ; / / o r s h o r t c u t
t o consume on a l l i n p u t s

33
34 / / r e t u r n produced
35 return noutput_items ;
36 }
37 } ;

Some observations:

• This class overloads the general_work() method, not work().

• The general work has a parameter: ninput_items.

• ninput_items is a vector describing the length of each input buffer.

• Before return, general_work must manually consume the used inputs.

• The number of items in the input buffers is assumed to be nout-
put_items.

• Users may alter this behaviour by overloading the forecast() method.

Obviously there are many other types of blocks, here I reported just the
structure and some examples of the most famous blocks. For any additional
informations it is possible to consult the bibliography.

4.5 Iris

Iris is a open-source software totally developed at CTVR / The Telecom-
munications Research Centre, "Trinity College", Dublin 2, Ireland. I had the
pleasure to know this software during my STSM and I report just a short
description of this and of its potentialities. In the bibliography it can find
many links and additional materials about it [13] [14] [15].

Iris is a software architecture for building highly reconfigurable radio
networks. It has formed the basis for a wide range of dynamic spectrum
access and cognitive radio demonstration systems presented at a number of
international conferences between 2007 and 2010. These systems have been
developed using heterogeneous processing platforms including general-
purpose processors, field-programmable gate arrays and the Cell Broad-
band Engine. Focusing on runtime reconfiguration, Iris offers support for
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all layers of the network stack and provides a platform for the development
of not only reconfigurable point-to-point radio links but complete networks
of cognitive radios.

Fig. 4.7: Structure of Iris.

4.5.1 Reconfiguration

In contrast with software architectures such as GNU Radio, Iris is de-
signed specifically to support maximum reconfigurability while the radio is
running. This permits a network node to carry out reconfigurations seam-
lessly in response to observed changes in the operating environment. This
reconfigurability is realized through a number of mechanisms that were
built into the Iris architecture. The first of these is the component parameter.
When implementing an Iris component, the designer can choose to expose a
number of parameters. While the radio is running, these parameters can be
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dynamically reconfigured to adjust the operation of the component. Another
powerful way in which component parameters can be used is to implement
data-flow switching. A switch component can be used to direct the flow
of data in the system to one of two or more signal processing branches. A
parameter exposed on the component specifies the active output port to
which data is written, and thus the active signal processing branch. This
approach can be used, for example, in a receiver with independent receive
chains for demodulation, and for signal detection and classification. When
searching for a signal of interest, the flow of data is directed to the processing
chain for signal detection and classification. When a signal is detected and
classified, the switch component is reconfigured to direct the flow of data to
the demodulation chain for data extraction.

In addition to the mechanisms provided to support parametric and struc-
tural reconfiguration, the Iris architecture provides specific support for the
triggers which determine when these reconfigurations must take place. The
first type of trigger that can occur within a radio is internal and typically
takes place in response to a change detected by one of the radio components.
In order to support such a trigger, Iris provides support for component
events. These events are specified by the component designer and may be
triggered by the component at any time. The elements of the Iris architecture
with responsibility for listening for and responding to these events are the
controllers. Controllers have a global view of the running radio and are
capable of reconfiguring all aspects of it in response to component events.
The Controller Manager is illustrated in Fig. 4.7, and is responsible for load-
ing and managing the life cycle of controllers within Iris. In addition to
reconfiguring component parameters, controllers can adjust the structure of
a running radio by inserting and removing components. Like components,
controllers are implemented in portable C++ and are loaded into a radio ac-
cording to the XML configuration file. A key advantage of using controllers
in this way is the avoidance of inter-component dependencies. By ensuring
that components remain independent of one another, maximum reusability
can be achieved. Controllers may consist of simple reconfiguration responses
to predefined events or they may be much more complex entities, listening
for multiple events, monitoring the state of the overall radio, reconfiguring
many different aspects of it when necessary, and learning over time. In this
way a controller can be used to implement a cognitive engine which drives
the operation of the entire radio [16].

4.5.2 Iris Engines

One of the motivations behind the design of the Iris architecture was to
move from experimenting with simple point-to-point links toward larger

32



Luca Milani CHAPTER 4. SOFTWARE DEFINED RADIO

networks of cognitive radio nodes. The support provided for not just the
PHY layer but also higher layers of the network stack is something that
differentiates Iris from other architectures such as GNU Radio. By exam-
ining the constituent parts of a node within a cognitive network, we can
identify a number of domains, each with different requirements for recon-
figuration, datapassing, and execution. Implementing an architecture that
caters for just one of those domains will lead to reduced efficiency and
greater development challenges. Within the Iris architecture, the concept
of a modular domain engine is used. The Iris engine encapsulates one or
more components of the overall data flow graph of the node and defines the
datapassing, execution, and reconfiguration semantics for those components.
A radio implemented in Iris may consist of one or more of these engines.
We define three domains within a cognitive network node and provide an
engine for each. These domains are the scheduled PHY, the flexible PHY,
and the network stack [16].

4.5.3 Simple Radio implementation

I report a simple radio code in xml composed by only two blocks, Iris
doesn’t provide a friendly Graphical User Interface (GUI), anyway the code
designing is very intuitive:

1 <?xml version=" 1 . 0 " encoding=" utf �8" ?>
2
3 <sof twareradio name=" Radio1 ">
4
5 <engine name=" phyengine1 " c l a s s =" phyengine ">
6
7 <component name=" usrprx1 " c l a s s =" usrprx ">
8 <parameter name=" frequency " value=" 2412000000 "/>
9 <parameter name=" r a t e " value=" 2500000 "/>

10 <port name=" output1 " c l a s s =" output "/>
11 </component>
12
13 <component name=" f i l e r a w w r i t e r 1 " c l a s s ="

f i l e r a w w r i t e r ">
14 <parameter name=" f i lename " value=" out .m"/>
15 <port name=" input1 " c l a s s =" input "/>
16 </component>
17
18 </engine>
19
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20 < l i n k source=" usrprx1 . output1 " s ink=" f i l e r a w w r i t e r 1 .
input1 " />

21
22 </sof twareradio>

At first it need to specify the used engine (in this case the "phyengine")
and all the used blocks. In this example we have just an UHD block (it per-
mits us to link the URSP with the software architecture) and a file raw writer
that saves in a file the row In-Phase & In-Quadrature data coming from the
USRP. Inside the block statement it is possible to set all the parameters, such
as the center frequency, the sample rate, the gain, the file name, etc. At the
end of the code we need to state the links between the blocks, in this case
just the connection between the USRP source and the File sink.
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CHAPTER 5

SPECTRUM ANALYZER

The second main instrument used in this work is the Spectrum Analyzer.
The chapter 5 starts with a general description of the device and then it
particularly talks about the used instrument, the Rohde&Schwartz FSVR 7
underling the used mode and the employed software.

5.1 Generality

A spectrum analyzer measures the magnitude of an input signal versus
frequency within the full frequency range of the instrument. The primary use
is to measure the power of the spectrum of known and unknown signals. It is
important to note that the input signal is always electrical, so an appropriate
transducer is needed to consider all kind of signals (acoustic, optics, etc.).
By analyzing the spectra of electrical signals, dominant frequency, power,
distortion, bandwidth and other several components, can be observed that
are not easily detectable in time domain waveforms [17]. The classical mode
of the instrument has frequency on the horizontal axis and the amplitude
displayed on the vertical axis. Generally there are two types of spectrum
analyzer, dictated by the methods used to obtain the spectrum of the signal:

• A swept-tuned spectrum analyzer uses a superheterodyne receiver to
down-converter a portion of the input signal spectrum to the center
frequency of the band-pass filter. With this type of architecture, the
voltage-controlled oscillator is swept through a range of frequencies,
enabling the consideration of the full frequency range of the instru-
ment.

• A FFT (Fast Fourier Transform) spectrum analyzer computes the dis-
crete Fourier transform (DFT), an efficient mathematical process that
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transforms a waveform into the components of its frequency spectrum.
Some spectrum analyzer, such a real-time spectrum analyzers, use
a hybrid technique where the signal is first processed using super-
heterodyne techniques and then analyzed using FFT techniques.

5.2 FFT based Spectrum Analyzer

The modern digital spectrum analyzers usually use the FFT technique.
With a FFT based spectrum analyzer, the frequency resolution is �f =

1
T

, the
inverse to the time T over which the waveform is measured and transformed.
Obviously it is necessary to sample the input signal with a sampling fre-
quency that is at least twice the bandwidth of the signal, due to the Nyquist
theorem. This can place considerable demands on the required analog-to-
digital converter (ADC) and processing power for the Fourier transform,
making FFT based spectrum analyzers limited in frequency range.

5.3 Realtime FFT: Hybrid approach

Most modern spectrum analyzers are now almost exclusively Hybrid
Superheterodyne-FFT based. With increasing computing power, the newest
analyzer generation was equipped with FFT filters for narrow bandwidths.
Multiple narrowband FFTs were concatenated to a trace representing the
selected frequency span. As the computing time for the FFTs was small com-
pared to the settling time for narrow RBW filters, the FFT method provided
a great speed advantage over the traditional sweep method. The latest spec-
trum analyzer generation makes excessive use of the FFT method for narrow
resolution bandwidths. In addition, it introduces complex digital filters for
wideband resolution filters, providing a factor of 25 in sweep speed increase,
compared to earlier analog implementations. The measurement speed has
increased dramatically, but one property has survived all evolution steps:
it’s impossible to detect signals between the end of one sweep and the start
of the next one. This gap in data acquisition (Fig. 5.1), called "blind time",
has decreased with each new spectrum analyzer generation, but it is still
present.

Because real-time analysis means not to loose any information, thanks to
the high resolution of ADCs available today, it’s possible to combine these
wideband ADCs with FFT algorithms implemented in delicate hardware
(e.g. an FPGA).

The key-concepts are:

• Parallel sampling and FFT calculation: the data acquisition continues
while the FFTs are performed (Fig. 5.2).
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Fig. 5.1: Captures and blind time.

• Fast processing of FFT algorithms: The computation speed must be
high enough to avoid that "stacks" of unprocessed data are being built
up. Slow FFT computation will result in an overflow of the capture
memory and a subsequent data loss (so a new blind time).

Fig. 5.2: Parallel capture
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5.4 Rohde&Schwartz FSVR 7

Fig. 5.3: Rohde&Schwartz FSVR 7 Spectrum Analyzer.

The R&S FSVR 7 (Fig. 5.3) is a Real Time Spectrum Analyzer, operating in
the frequency range of 10 Hz to 7GHz with a 40MHz maximum bandwidth
[19]. The R&S FSVR 7 spectrum analyzer is based on the last approach de-
scribed. As already stated earlier, the critical point behind real-time analysis
is to run data acquisition and data processing in parallel. To achieve this,
the digital backend of the R&S FSVR is equipped with a chain of powerful
ASICs and FPGAs in combination with a large memory for captured data.
This combination allows the instrument to process the data in several stages
in a pipeline architecture. The last stage of the pipeline is the CPU, which
reads the pre- processed data, applies the necessary scaling information and
displays the resulting curve on the screen.

Fig. 5.4 shows the signal flow diagram from the A/D converter (ADC)
to the display unit. The ADC is operated at a constant sampling rate of
128 MHz. The ADC streams raw data into the resampler and digital down-
converter, which convert the input signal into a digital baseband, whose
bandwidth is equal to the selected frequency span, and whose sampling rate
fulfills the Nyquist criterion for this bandwidth. The ratio between complex
baseband sample rate and selected frequency span is 1.2, meaning that e.g. a
40 MHz span is sampled with 50 complex MSamples per second. For smaller
bandwidths, the sampling rate is automatically reduced. The sampling rate
determines the number of samples which are available for analysis. After
resampling, the data stream is transformed into the frequency domain by
means of an FFT. Each FFT consists of 1024 so called bins or data points. The
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Fig. 5.4: FSVR7 signal flow diagram.

FPGA running the FFT algorithms delivers up to 250,000 FFTs per second.
In parallel the resampled baseband data is written into the I/Q memory for
additional offline (non real-time) post-processing, like e.g. zooming into a
captured region or reading out the I/Q samples via LAN or GPIB. Note that
the I/Q memory is implemented as a circular buffer which means that once
the memory is full, the oldest samples will be overwritten [18].

5.5 R&S I&Q Wizard Software

IQWizard is a software tool for loading IQ data files in various formats
or measuring IQ signals with the Spectrum Analyzer. The IQ data may be
stored various file formats for further processing with signal analysis, sim-
ulation and generation tools such as MATLAB. It’s possible to connect the
computer running IQWizard directly to the instrument with a GPIB or LAN
cable or establish the connection via Ethernet switch connected to DHCP
server.

In this work the remote mode was used in order to capture the I&Q data
in MATLAB format (Fig. 5.5 - 5.6). More details about the parameters and
the purposes can be found in chapter 6.
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Fig. 5.5: R&S I&Q Wizard Software.

Fig. 5.6: R&S I&Q Wizard Software during a capture.
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CHAPTER 6

CORE RESEARCH

The experiments and captures have been done in CTVR / The Telecom-
munications Research Centre, "Trinity College", Dublin 2, Ireland, under the
supervision of PhD student Paolo Di Francesco, and in the ACTS lab, De-
partment of Information, Electronics and Telecommunication Engineering
(DIET), "Sapienza, University of Rome", Italy.

Preamble and work summary

This work aims to deal with this issue by proposing a method for auto-
matic recognition and classification of wireless technologies. The considered
frequency band is the Industrial Scientific and Medical (ISM) 2.4 GHz band.
The proposed approach consists of exploiting features of the Media Access
Control (MAC) sub-layer of the various wireless technologies. Every net-
work has its own particular MAC behavior, as defined in the standard that
describes each of them. Through the study of these standards, a peculiar
MAC behavior can be identified for each type of network, and a recognition
and classification process can be carried out by evaluating these features. In
particular, all it need is a time-domain frame diagram. This diagram shows
the presence versus absence of a frame in every instant with no attention
to the content of these frames. In fact, the packet informations are not rele-
vant for the scope of this recognition, the only important thing is the frame
pattern, a medium for revealing the technology that is currently in use, and
thus the networks recognition. This means that there can be a maximum
or minimum duration for certain types of frames, or even a fixed duration.
The same rules can be determined for the silence gaps that fall between the
frames. Moreover the standard may specify a regular and predetermined
transmission of a frame (usually these are control frames needed to ensure
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the correct system functionalities), or the transmission of acknowledgment
frames after the reception of data frames. All these rules are specific for
every single technology, i.e. each different network may present a MAC
behaviour that is proper and peculiar of that technology.
In order to obtain the time-domain frame exchange diagram, all it need is a
simple device: an energy detector(ED). Using the energy detection theory,
the ED can compute the short-term energy that is present on the air inter-
face. After defining a threshold value, all the consecutive short-term energy
values that are higher than the threshold can be considered as frames. In
this way, the frame diagram can be formed using energy detection [1].

I first capture the I and Q data signals through two different devices
and then I’ll process the files with the same MATLAB script to analyze
the captures and to extract the features (Fig. 6.1). In this work we consider
only three different scenarios: as a first experiment, I’ll capture the data
when only the wifi is active in the environment. As a second experiment I’ll
capture only Bluetooth signals. Finally I’ll try to recognize both Bluetooth
and Wifi signals in a mixture scenario where a network will be predominant
on the other.

Fig. 6.1: Workstation used for the experiments.

6.1 The Universal Software Radio Peripheral

The first step is the acquisition of the signals through the Universal
Software Radio Peripheral (USRP), in particular I used the USRP N210 (Fig.
6.2).

This hardware has recently gained growing attention by the research
community given its low cost and open source vision. It is fundamental to
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Fig. 6.2: USRP N210.

focus the attention in the communication interface between hardware and
software, USRP2 uses the Gigabit Ethernet (GigE) link. GigE has a maximum
transfer rate of 125 MB/s which is equivalent to about 30 MS/s. Thus, the
USRP2 has a sampling window maximum of 25 MHz when using a deci-
mation rate of 4. This sampling window is wide enough to cover about 22
consecutive IEEE 802.15.1 channels in the 2.4 GHz band. Although there are
16 total channels in the ISM band, using the USRP2 is a good start to seeing
the power of SDR. As technology improves, a SDR capable of sampling the
entire band of bluetooth channels is a possibility.
I used the USRP N210 with a XCVR2450 daughterboard mounted inside.
It is a high-performance transceiver intended for operation 2.4 GHz and
5.9 GHz range. In particular I’ll observe the 2.4 GHz ISM band in order
to monitor as much as possible Wifi and Bluetooth channels. The adopted
antenna was a dual band 2.400-2.483 GHz and 4.9-5.8 GHz vertical antenna,
with a gain of 3 dBi in the lower band.

6.2 GNU Radio software

The acquisition process with the USRP is developed through the GNU
Radio Software Defined Radio (SDR) platform [10], in particular we used
GNU Radio Companion (GRC).

GRC (Fig. 6.3) is a graphical tool for creating signal flow graphs and
generating flow-graph source code, it is very intuitive and powerful thanks
to the large community that every day improves the project. GNU Radio
is an open-source effort to create software that uses a minimal hardware
platform to implement a radio (in this case the USRP). The project aims to
make SDRs easy to program and accessible to a larger group of users. A
block based programming model is taken with GNU Radio. Different signal
processing blocks can be connected together in a signal processing pipeline.
These blocks can be composed of other blocks in a recursive fashion. The
ability to easily reuse existing code and swap blocks makes creating an
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Fig. 6.3: GNU Radio Companion logo.

application with GNU Radio quick. Since processing logic is implemented
in software, to test changes a recompile is all that is needed. Thanks to GRC
we are able to develop a radio simply connecting the C++ process blocks
through a useful GUI.

6.2.1 Flowgraph implementation

However, the main problem found is the sample rate, in fact I must
use the higher sample rate possible for the USRP (25 MS/s) to obtain the
maximum bandwidth (about 25MHz). This could create some problem
during the capture because the limit of the Ethernet cable and the speed of
the Hard Drive are not able to sustain the high stream of data coming from
the USRP. Those limitations could generate overflow events hence falsify
the measures. In order to minimize the overflows I developed a very simple
flow graph in GRC (Fig. 6.4) composed by the UHD source (a interface block
between the hardware and the software, i.e. between the USRP and GNU
Radio) then connected to a File Sync Block. In this way I can save a I&Q raw
data file of several seconds without leaks of information (no overflows) that
it can be load in a further software to do an offline analysis.

6.3 R&S FSVR Real-Time Spectrum Analyzer

The second device used in the experiments is the Rohde&Schwarz FSVR7
Spectrum Analyzer [4], this instrument is more accurate and more expensive
than the USRPs. It would be useful to compare the results in order to verify
that the measures done with the USRP were right. I used the device in
remote mode (Fig. 6.5) by a DELL workstation running WindowsXP (Intel
Core Duo CPU 6600, 2.40 GHz, 2 GB of RAM), because this is the only way
to exploit the spectrum analyzer as an I&Q recorder. We made use of a
software provided by R&S called I&Q Wizard, a simple tool for loading I&Q
signals.
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Fig. 6.4: GRC flowgraph.

Fig. 6.5: Spectrum Analyzer in remote mode.
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6.4 Acquisition parameters

I have set the two used instruments with equal acquisition parameters,
there are only two difference: the first is that the output format of the Spec-
trum Analyzer is composed by two different raw data (for I and Q) that I
have to combine subsequently through an ad-hoc instruction, differently
to the USRP that has an output format based on a single matrix but with
the necessity of a script conversion provided by the Ettus Research. The
second difference is the time window length of the captures. Unfortunately
I was able to capture only 16776704 samples with the spectrum analyzer.
This is a limitation caused by the remote mode and by the nature of the in-
strument that it was not designed as an I&Q recorder. However the samples
are enough to elaborate the signals, considering a sample rate of 25 MS/s
we obtained a capture of 16776704 / 25e6 = 0,67106816 sec, a good window
of time if we consider that we are looking for energy profiles in the order of
microseconds.

Center freq: 4.412 GHz
Sample rate: 25 MS/s
Gain: 40 dB

I set the sample rate to the maximum to obtain a bandwidth of about
25 MHz (both the USRP and the Spectrum Analyzer admit 25 MS/s at
most). The choice of setting the center frequency at that value is due to
a maximization of the considered channels, in fact I was able to monitor
the range of frequency between 2399.5 MHz and 2424.5 MHz. If I refer to
the Bluetooth case, considering that the first channel is at 2.402 GHz and
one channel has a width of about 1 MHz, I can observe about 22 Bluetooth
channels (with a guard band of 2.5 MHz to eliminate the non-ideality of the
filters).

6.5 The MATLAB script

I chose MATLAB to elaborate the data captures from the considered in-
struments. In particular, I used the MATLAB script "read_complex_binary.m"
contained in the folder "/gnuradio-core/src/utils/" in every Ubuntu system
with GNURadio installed to load the files coming from USRP. Regarding the
Spectrum Analyzer I used the simple instruction "complex()" in MATLAB
to combine the separate I&Q data in a single data file. In order to process
the data file with MATLAB I used a laptop MacBook Pro with Processor 2,7
GHz Intel Core i7 and Memory 8 GB 1333 MHz DDR3 running Mac OS X
10.8.5.
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The main structure of the code is reported at the end of this work (ap-
pendix B).

The first task of the script is to calculate the Fast Fourier Transform (FFT)
of the signals. The only important aspect to consider is the choice of the FFT
size. In order to explain this issue we have to recall some important MAC
sub-layer features of the WiFi, especially the Short InterFrame Space (SIFS).
For the considered IEEE standards the SIFS duration is 10 µs and in general
it does not deviate from a mean value of 9 and 12 µs; moreover the timing of
the Bluetooth networks is above 100 µs. So I need a time resolution capable
to appreciate variations of few microseconds. The "new sample rate" after
the FFT is the real Sample rate divided by the FFT size, choosing 64 Sam-
ples (S) as FFT Size I could obtain a clear resolution to have a considerable
precision.

Sample Window =

FFTsize

SampleRate
=

64 S

25 10

6S/s
= 2.56 µs

6.5.1 Analysis based on Energy Detection

The energy detection theory was used because it provides a clean result
in obtaining the Short Energy Diagram (SED) in time, thanks to this dia-
gram I was able to analyze to presence vs the absence of the frames. The
energy detector is known as a suboptimal detector, which can be applied
to detect unknown signals as it does not require a prior knowledge on the
transmitted waveform as the optimal detector does. As shown in Fig. 6.6,
the 3D plot provides the Energy versus both the time and the frequency
while we are interested to visualize the energy versus time considering the
whole bandwidth that we have. Conceptually we only need a rotation of the
figure with a compaction of all frequency contributions.

6.5.2 Short Energy Diagram

Once I made all the premises, I can start to analyze the signals through
the use of the Short Energy Diagram (SED) in time. I obtained a SED (Fig.
6.7), simply calculating the mean of the samples at the same time for all
frequencies considered, i.e. the average on the total 25 MHz bandwidth.

However, the diagram in this way is not readable and useful to our goal.
Thus I must consider some thresholds to locate the areas of energy and to
ignore any unwanted signals and the noise floor. Three different thresholds
have been set (Fig.1), they are based on the minimum and maximum power
received in reference to the Short Energy Diagram.

47



Luca Milani CHAPTER 6. CORE RESEARCH

Fig. 6.6: 3D Energy Diagram.

Fig. 6.7: Short Energy Diagram with thresholds.
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PowerRange = PR = MaxPower �MinPower

LowerThreshold =

PR

4

MediumThreshold =

PR

2

HigherThreshold =

3 PR

4

In general, the medium threshold should be above of about 10 dB from
the noise floor. For this reason we’ll look at way to maintain only the medium
and higher levels. Interesting enough is the plot of the SED with the only
presence of three values (Fig. 6.8). This is could be useful to have a general
vision of the distribution of power in time.

Fig. 6.8: Simplified Energy Diagram.

As mentioned above, there is a better way to work, indeed we are not
concerned to discover the power or others peculiarities of the signals. The
only important thing that we have to know it is the presence or the absence
of a frame in relation to time. In order to do that, I converted the matrix to
a new matrix where all the medium and higher samples corresponding to
’1’ (presence of frame) and all the lower and null samples corresponding
to ’0’ (absence of frame). This processing also adds a good improvement
to robustness of analysis; recalling an FFT size of 64 S, it is normal that the
noise floor should be wider and more intrusive than a bigger FFT size (for
example 1024 S). The reason has been identified in the average process: a
bigger FFT size gives good result in the estimation of the noise floor, but it
gives the same result in the recognition of the useful power for this project.
This because more than half samples are located near the noise floor and the
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mean is able to minimize the fluctuations if there are many contributions to
the sum. If I compare two SED (64 S and 1024 S FFT size respectively, Fig.
6.9 and 6.10) the difference is evident, in fact several measurements on real
captures pointed out many problems in considering the lower threshold.
Hence the choice to consider only the medium and higher thresholds be-
cause they highlighted a clear behavior also with a lower FFT size.

Fig. 6.9: Short Energy Diagram with FFT size of 64 S.

6.5.3 Frame Diagram

Now I can plot the frame diagram (Fig. 6.11), the central reference of
the analysis. The main goal of the project is the extraction of the MAC
features and the frame diagram in time is the best solution to discover
and check these peculiarities. At first I observed that in general the frame
diagram assumes a relevant periodic trend; thanks to the correction scripts
and the threshold discriminations, we can note some regular patterns during
a particular bluetooth or wifi transmission. Because we are looking for a
system that should give us automatic informations about the networks, we
have to work on some scripts designed to scan the entire frame matrix.
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Fig. 6.10: Short Energy Diagram with FFT size of 1024 S.

6.5.4 Correction Script

I adopted two different types of correction designed to improve the accu-
racy of the frame pattern. The first revision is made before any recognition
scripts and it consists in a correction of four anomalous cases: 101 - 010 -
1001 - 0110 (where ’1’ means a frame present and ’0’ means an not-frame
present). Considering a sample window of 2.56 µs, it may be the presence of
wrong information due to overflow events or threshold mistake. In this way
I’m able to correct one or two potential wrong samples, corresponding to
a time of 2.56 µs and 5.12 µs. Actually the corresponding times of one-two
samples are shorter, it is reasonable not to assume the transition precisely
at start of the sample window but, using a probabilistic view, it could be
right to assume as an hypothesis the transition at middle of sample window.
So, the time correction would become 1.28 - 2.56 µs. A second correction of
three-four samples has been adopted in the code, however it only concerns
the bluetooth recognition. The corresponding time of the second one are
5.12 - 7.68 µs and they are too long to elaborate a Wifi connection with a SIFS
of only 10 µs. Otherwise, the bluetooth case trades energy profiles above to
50 µs, compatible with the revision just exposed.
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Fig. 6.11: Example of frame diagram (WiFi transmission).

6.6 Result: The WiFi Case (IEEE 802.11 b / g / n)

The most captures have been done using a MacBook Pro and iPad mini,
in particular I created a computer-to-computer network to ensure that the
standard type used was b, g or n and also to choose the channel. Regarding
the channel I always set the channel one (Fig. 6.12) because it was the only
one totally included in the 25 MHz of bandwidth considered.

Fig. 6.12: Wi-Fi network informations.

6.6.1 First analysis

The physical layer of a Wi-Fi network is different depending on the
standard version [2], of course, but obviously even for the supported bit
rate, whose value can be variable. I considered the SIFS as the start feature
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to recognize a WiFi network in the air. It is defined as the time duration
between the end of the last symbol of the previous frame and the beginning
of the first symbol of the following frame and it has a nominal value of 10
µs for the standard considered. I have done this verification through the
use of a simple script based of a fast analysis of the entire data matrix. The
idea behind is to find at first a possible data frame and then immediately
verify the length of the InterFrame before the acknowledgment. We only
considered frames composed at least by 90 samples as a valid data frames,
i.e. the threshold of one valid frame has set to about 230 µs. I often obtained
great result just by this simple process, I report an example of MATLAB
print generated by the automatic script (Fig. 6.13).

Fig. 6.13: Example of Script Stamp (WiFi transmission).

6.6.2 Second analysis

In addition to this first check, I tried to start a specific analysis based on
the length of the data frames. In fact, sometimes it’s difficult to be sure that
the network recognized is WiFi only with InterFrame inspection. Therefore,
every time the script finds a valid IF, it saves the duration of the previous
frame in a new array. In this way I’m able to plot the time distribution of the
found frames and the average of their duration. An interesting instrument
to plot the frame length is the BoxPlot (Fig. 6.14).

Box plot

In descriptive statistics, a box plot is a convenient way of graphically
depicting groups of numerical data through their quartiles. Box plots may
also have lines extending vertically from the boxes (whiskers) indicating
variability outside the upper and lower quartiles, hence the terms box-and-
whisker plot and box-and-whisker diagram. Outliers may be plotted as
individual points.
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Box plots display differences between populations without making any as-
sumptions of the underlying statistical distribution: they are non-parametric.
The spacings between the different parts of the box help indicate the degree
of dispersion (spread) and skewness in the data, and identify outliers. In ad-
dition to the points themselves, they allow one to visually estimate various
L-estimators, notably the interquartile range, midhinge, range, mid-range,
and trimean. Boxplots can be drawn either horizontally or vertically.

The BoxPlot is a quick way of examining one or more sets of data graphi-
cally. Boxplots may seem more primitive than a histogram or kernel density
estimate but they do have some advantages. They take up less space and are
therefore particularly useful for comparing distributions between several
groups or sets of data. Choice of number and width of bins techniques can
heavily influence the appearance of a histogram, and choice of bandwidth
can heavily influence the appearance of a kernel density estimate. As look-
ing at a statistical distribution is more intuitive than looking at a boxplot,
comparing the boxplot against the probability density function (theoretical
histogram) for a normal N(0,�2) distribution may be a useful tool for under-
standing the BoxPlot [21].

Fig. 6.14: BoxPlot of recognized WiFi frames.

As just shown, the length of the WiFi frames during a transmission tends
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to be fixed, in particular it is about 250 - 255 µs if I consider a data transfer
or a music streaming. It is possible to mark this result in all captures done
from both USRP and Spectrum Analyzer. The boxes in the graphics don’t
extend to a lot of values but they remain around the expected value and the
outliers may be caused by noise overlaps that corrupt the decision process
at start.

6.7 Result: The Bluetooth Case (IEEE 802.15.1)

Regarding the Bluetooth recognition, I choose to take as reference the
length of the frames. I considered the standard IEEE 802.15.1 [3] with the
bluetooth versions 1.2 and 2.0; the main difference between the versions
is the bit rate, respectively 1 Mb/s and 2.1 Mb/s considering the practical
data transfer. A frame can last an odd number of time slots; in particular,
there can be 1-time slot frames, 3-time slots frames and 5-time slots frames.
A communication between the master device and a slave device is usually
composed by alternate frames, since each device waits for a "return frame"
(at least an acknowledgment) after sending a frame. Following these rules,
imposed by the standard, it is clear that a Bluetooth MAC frame exchange
pattern is characterized by frames that start every time slot duration, or at
multiples of this value, if considering the multi-slot frames. Furthermore,
many acknowledgment frames are expected; the NULL frame is the one used
for acknowledgment, and it has a fixed length of 126 bits, that corresponds to
a fixed duration of 126 µs considering the bit rate of 1 Mb/s. The other frames
have also minimum and maximum durations, imposed by the standard. I
report a table of considered values:

Bit Rate: 1 Mb/s 2.1 Mb/s
NULL(ACK): 126 µs 60 µs
OneSlotFrame: 126 to 366 µs 174 µs (max value)
ThreeSlotFrame: 1250 to 1622 µs 772 µs (max value)
FiveSlotFrame: 2500 to 2870 µs 1367 µs (max value)

As a first peculiarity, I checked the NULL frames, in fact they are the
only ones able to ensure a probable presence of bluetooth networks. The
time range of the OneSlot frames, for example, is too wide and other type
of energy profiles could be assigned to this, especially if there are WiFi net-
works during the captures. Considering the fixed value of the NULLs, this
approach appears robust and only after that, it may make sense to consider
the longer frames. I took a lot of captures of bluetooth signals (v2.0), in
particular I used a scenario where a smartphone Nokia N70 communicated
to a MacBook Pro and a second scenario with a data transfer between two
Nokia N70, both in transferring a file of about 5 MB. I also considered two
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different situation: the transition time between the device pairing and the
data transfer, and the window time in the middle of the transfer. In the
standard chosen, there are two different bit rate that produce two different
length groups of frame: several captures and experiments have revealed
that the bluetooth version v2.0 uses a prevalent bit rate of 1 Mb/s during the
pairing and a bit rate of 2.1 Mb/s during the data transfer. For this reason I
did two different script in order to recognize the features in both cases.

Fig. 6.15: USRP example: Transition time between pairing and transfer.

Fig. 6.16: Spectrum analyzer example: data transfer.

Thanks to this two examples (Fig. 6.15 and Fig. 6.16), it is possible to
underline that, during the transition time, the script recognized both pecu-
liarities, instead during the data transfer it found no acknowledgment of 1
Mb/s but only of others.
Finally it may be interesting a brief analysis of the frame lengths during the
transfer: an important feature is that the frames, when it’s possible, tend
to assume the maximum length admitted by the standard. For this reason,
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regarding to 2.1 Mb/s instead of considering all the range of value for the
"slot" frames, I choose to locate only the maximum length frames. Besides
the devices usually employ the same type of frame during a transmission, as
it’s possible to look in the examples (Fig. 6.15 OneSlot frames and Fig. 6.16
ThreeSlot frames). Referring to 1 Mb/s I tried to consider all the range of
frames because I didn’t note a particular frame behavior during the pairing.

6.8 Result: The mixed scenario

As described before, the last scenario considered it was the captures of
both WiFi and Bluetooth signals. I obtained the best result in capturing a
predominant bluetooth transition time with a WiFi pairing in background
(about 40 cm far to the bluetooth devices). I report in the (Fig. 6.17) the
whole script stamp: the results are not bad, however I found some problems
when the networks operate at the same distance because the WiFi tends to
dominate against the Bluetooth. The latter usually tries to change operative
frequency in order to maximize the transfer, so the script is not able to
recognize the features.
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Fig. 6.17: USRP example: mixed scenario.
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CHAPTER 7

CONCLUSION & FUTURE
WORKS

While the WiFi results appear enough robust in the considered cases, the
bluetooth case should still improve with other peculiarities to be extracted
from the standard. In particular, interesting enough could be the investi-
gation in timing of slot and in the silence gap between particular types of
frames. It also may extend the argument considering the other standards
and the other versions of both networks considered, always starting with
common features and continuing with particular features in order to maxi-
mize the efficiency of the script.

Another branch for the future works may be the implementation of
the energy detection process totally in real time. This would allow a faster
analysis because the computational process off-line would become just an
analysis of the matrix to extract the features without any kind of demanding
operations. In this approach the captures should be smaller but more fre-
quent in order to create a sort of "pipeline" process between GNU Radio and
MATLAB. Unfortunately there are some limitations in using that approach,
in fact the sample rate problem appeals again: the flow graph of energy
detection in GRC should become more complex and the overflow events
may be increasingly present. So, the only way to avoid the matter is to
decrease the Sample Rate with the hope of better performance of devices
in the future. In the appendix A, I report a first implementation using GRC,
this could pave the way to move some processes up to now offline to a
real-time analysis.
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APPENDIX A

REAL TIME ENERGY
DETECTOR

This appendix regards an implementation totally in GRC of an energy
detection of the ISM 2.4 GHz band.

The sample rate considered is 15 MS/s and it was the best solution not
to obtain too many overflows running the software, for more informations
about this aspect it’s possible to consult the chapter 6, in particular the
section 6.2.1.
The flow graph is reported in Fig. A.1, the basic idea is the same used in
the MATLAB script presented in this report and it was founded again on
the energy detection theory. The data stream coming from the USRP source
(a interface block between the hardware and the software, i.e. between the
USRP and GNU Radio) is converted in a vector of 128 items by a block
called gr.stream_to_vector. Its task is to take a stream of items as its input
and convert it into a stream of blocks containing nitems_per_block as its
output. In this work, nitems_per_block is equal to the size of our FFT which
is 128. Then, this signal will be pushed into the GNU radio FFT block, in
this process the input of the signal processing block is in complex vector
type and the output is also a complex vector. In the FFT block, windowing
technique is used to optimize the FFT result. Windowing is a technique
used to shape the time portion of the sampled signal. This is to minimize
edge effects that will result in spectral leakage in the FFT spectrum and
increases the spectral resolution the frequency domain result. The complex
output of the FFT block will then be connected to the complex magnitude
block named gr.complex_to_mag2. This block takes a complex number as its
input and gives the squared magnitude (in float format) of this number
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as output. Then, the result of this block will be converted from the ADC
value to the dBm units by using gr.nlog10_ff block [20]. Finally, the vector is
converted again to a stream to visualize the Short Energy Diagram in time
domain thanks to the use of the "WX GUI Scope Sink" (Fig. A.2), the mean
instruction on the vector items is included in the conversion block.

Fig. A.1: Energy detector flow graph in GRC.
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Fig. A.2: Real Time SED.
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APPENDIX B

MATLAB CODE

I report the main structure of the MATLAB code used in this work to ob-
tain the Short-Term Energy Diagram and to scan the captures coming from
both USRP and Spectrum Analyzer in order to extract the MAC features for
the automatic recognition of networks.

1 %% LUCA MILANI
2
3 %% S c r e e n c l e n i n g
4 c l e a r a l l ;
5 c l c ;
6 f c l o s e ( ’ a l l ’ ) ;
7 c lose a l l hidden ;
8
9 %% Source t y p e

10 type = input ( ’USRP: 0 Spectrum_analyzer : 1 Input
source ���> ’ )

11
12 %USRP c a s e
13 i f ( type == 0)
14
15 basepath = ’/Users/LucaMilani/Desktop/captures/ ’ ;

%r e f e r e n c e f o l d e r
16 f i lename = [ ’ gnuradio_samplesBLUETOOTH0409 .m’ ] ;

%f i l e n a m e
17
18 s i g n a l = read_complex_binary ( [ basepath f i lename ] )

; %c o n v e r t i o n s c r i p t
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19
20 %S p e c t r u m _ a n a l y z e r c a s e
21 e l s e i f ( type == 1)
22
23 basepath = ’/Users/LucaMilani/Desktop/

spectrum_captures/ ’ ; %r e f e r e n c e f o l d e r
24 f i lename = [ ’ blue3 ’ ] ; %f i l e n a m e
25 i f i l e = [ basepath f i lename ’ _ I . mat ’ ] ;
26 q f i l e = [ basepath f i lename ’_Q . mat ’ ] ;
27
28 load ( i f i l e ) ;
29 load ( q f i l e ) ;
30 s i g n a l = complex ( I ,Q) ; %complex d a t a
31 c l e a r I ;
32 c l e a r Q;
33 end
34
35 %% f r e q u e n c y range �� c e n t e r f r e q : 2 .412GHz ,

BANDWIDTH 25MHz
36 s t a r t f r e q = 2399500000 ;
37 endfreq = 2424500000 ;
38
39 %% FFT window s i z e and Sample Rate
40 f f t S i z e = 6 4 ;
41 sampleRate = 25 e6 ;
42
43 %% S t a r t t h e t i m e r
44 t i c ;
45
46 %% C a l c u l a t e t h e number o f non�o v e r l a p p i n g windows
47 len = length ( s i g n a l ) ;
48 numtraces = f l o o r ( len / f f t S i z e ) ;
49
50 %% Trunca t e t h e c a p t u r e a r r a y
51 samples = s i g n a l ( 1 : numtraces⇤ f f t S i z e ) ;
52
53 %% C l e a r some memory
54 c l e a r s i g n a l ;
55
56 %% Conver t f o r PSD c a l c u l a t i o n s
57 samples = reshape ( samples , f f t S i z e , numtraces ) ; %%

f f t S i z e ⇤numtraces mat r i x whose e l e m e n t s a r e t a k e n
column�wise from s a m p l e s

58

67



Luca Milani APPENDIX B. MATLAB CODE

59 %% C a l c u l a t e PSDs
60 captures = 10⇤ log10 ( f f t s h i f t ( abs ( f f t ( double ( samples ) ) )

, 1 ) ) ;
61
62 c l e a r samples ; %c l e a r some memory
63
64 %% S t a r t e l a b o r a t i o n
65 %t r u n c a t i o n o f s p e c t r u m _ a n a l y z e r a r r a y t o e l i m i n a t e a

p eak a t t h e end
66 i f ( type == 0)
67 captures2 = mean ( captures ) ;
68 e l s e i f ( type == 1)
69 captures22 = mean ( captures ) ;
70 for n= 1:261900
71 captures2 ( n ) =captures22 ( n ) ;
72 end
73 c l e a r captures22 ;
74 end
75
76 %c l e a r some memory
77 c l e a r captures ;
78
79 %% C r e a t e a t i me ma t r ix b a s e d on t h e sample window
80 time = [ 1 : length ( captures2 ) ] ;
81 time = ( time . ⇤ f f t S i z e ) ./ sampleRate ;
82
83 %% P l o t t h e Short�term Energy Diagram
84 f igure ;
85 plot ( time , captures2 ) ;
86 t i t l e ( ’ Short�term Energy Diagram ’ ) ;
87
88 %% C a l c u l a t e t h e power range and t h e t h r e s h o l d s
89 maxpower = max (max ( captures2 ) ) ;
90 minpower = min ( min ( captures2 ) ) ;
91 powerrange = abs ( maxpower � minpower ) ;
92 cmin = minpower + powerrange ⇤ 0 . 5 ;
93 cmax = maxpower ;
94
95 %s e t t i n g t h e a x i s s c a l e s and l a b e l s
96 a xis ( [ 0 , ( ( numtraces⇤ f f t S i z e ) /sampleRate ) , minpower

, maxpower ] ) ;
97 s e t ( get ( gca , ’ XLabel ’ ) , ’ S t r i n g ’ , ’ Time ( s ) ’ ) ;
98 s e t ( get ( gca , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ Power (dBm) ’ ) ;
99
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100 %s e t t i n g t h e power t i c k s
101 ybounds = ylim ;
102 s e t ( gca , ’ YTick ’ , ybounds ( 1 ) : ybounds ( 2 ) ) ;
103
104 %c a l c u l a t i n g t h e t h r e s h o l d b a s e d on t h e power range
105 threshold1 = abs ( ( maxpower�minpower ) /4) ;
106 threshold2 = abs ( ( maxpower�minpower ) /4) ⇤2 ;
107 threshold3 = abs ( ( maxpower�minpower ) /4) ⇤3 ;
108
109 %% P l o t t h e t h r e s h o l d l i n e s on t h e Energy Diagram
110 xlim = get ( gca , ’ xlim ’ ) ; %Get x range
111 hold on ;
112 plot ( [ xlim ( 1 ) xlim ( 2 ) ] , [ ( minpower+threshold3 ) (

minpower+threshold3 ) ] , ’ r ’ ) ;
113 plot ( [ xlim ( 1 ) xlim ( 2 ) ] , [ ( minpower+threshold2 ) (

minpower+threshold2 ) ] , ’m’ ) ;
114 plot ( [ xlim ( 1 ) xlim ( 2 ) ] , [ ( minpower+threshold1 ) (

minpower+threshold1 ) ] , ’ y ’ ) ;
115 hold o f f ;
116
117 %% Make a new m a tr ix t o a n a l y z e t h e d i s t r i b u t i o n o f

t h e power
118 captures3 = [ ] ;
119
120 %t h r e e d i f f e r e n t l e v e l s c o r r e s p o n d i n g t o t h e

t h r e s h o l d s
121 for n=1: length ( captures2 )
122 i f ( captures2 ( n ) >(minpower+threshold1 ) &&

captures2 ( n ) <(minpower+threshold2 ) )
123 captures3 ( n ) = 1 ;
124 e l s e i f ( captures2 ( n ) >(minpower+threshold2 ) &&

captures2 ( n ) <(minpower+threshold3 ) )
125 captures3 ( n ) = 2 ;
126 e l s e i f ( captures2 ( n ) >(minpower+threshold3 ) )
127 captures3 ( n ) = 3 ;
128 e lse
129 captures3 ( n ) = 0 ;
130 end
131 end
132
133 c l e a r captures2 ; %c l e a r some memory
134
135 time = time .⇤1 0 ^ 6 ; %time c o n v e r t i o n in us
136
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137 %% New Energy d i n s t r i b u t i o n diagram in t ime
138 f igure ( 2 ) ;
139 plot ( time , captures3 ) ;
140
141 %s e t t i n g a x i s s c a l e s and l a b e l s
142 a xis ( [ 0 , ( ( ( numtraces⇤ f f t S i z e ) /sampleRate ) ⇤10^6) ,

�0.5 , 3 . 5 ] ) ;
143 s e t ( get ( gca , ’ XLabel ’ ) , ’ S t r i n g ’ , ’ Time ( us ) ’ ) ;
144 s e t ( get ( gca , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ENERGY ’ ) ;
145
146 %% Make a new m a tr ix t h a t c o n s i d e r s on ly t h e h i g h e r

t h r e s h o l d s
147 for n=1 : length ( captures3 )
148 i f ( captures3 ( n ) > 1 )
149 captures3 ( n ) = 1 ;
150 e lse
151 captures3 ( n ) = 0 ;
152 end
153 end
154
155 %% C o r r e c t i o n o f 2 .56⇤2= 5 . 1 2 s c o r r e s p o n d i n g t o 2

s a m p l e s
156
157 for n=1 : ( length ( captures3 ) �3)
158 i f ( ( captures3 ( n ) == 1) && ( captures3 ( n+1) == 0)

&& ( captures3 ( n+2) == 1) )
159 captures3 ( n+1) = 1 ;
160 e l s e i f ( ( captures3 ( n ) == 1) && ( captures3 ( n+1) ==

0) && ( captures3 ( n+2) == 0) && ( captures3 ( n+3)
== 1) )

161 captures3 ( n+1) = 1 ;
162 captures3 ( n+2) = 1 ;
163 end
164 end
165
166 %% I n v e r s e c o r r e c t i o n 2.56⇤2= 5 . 1 2 s c o r r e s p o n d i n g t o

2 s a m p l e s
167
168 for n=1 : ( length ( captures3 ) �3)
169 i f ( ( captures3 ( n ) == 0) && ( captures3 ( n+1) == 1)

&& ( captures3 ( n+2) == 0) )
170 captures3 ( n+1) = 0 ;
171 e l s e i f ( ( captures3 ( n ) == 0) && ( captures3 ( n+1) ==

1) && ( captures3 ( n+2) == 1) && ( captures3 ( n+3)
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== 0) )
172 captures3 ( n+1) = 0 ;
173 captures3 ( n+2) = 0 ;
174 end
175 end
176
177 %% P a c k e t d iagram P l o t
178
179 f igure ( 3 ) ;
180 plot ( time , captures3 ) ;
181
182 %New c u r s o r mode t o o b t a i n a b e t t e r r e s o l u t i o n in t ime
183 dcmObj = datacursormode ; %# Turn on d a t a c u r s o r s and

r e t u r n t h e
184 %# d a t a c u r s o r mode o b j e c t
185 s e t ( dcmObj , ’ updateFcn ’ , @updateFcn ) ; %# S e t t h e d a t a

c u r s o r mode o b j e c t up da t e
186
187 %s e t t i n g a x i s s c a l e s and l a b e l s
188 a xis ( [ 0 , ( ( ( numtraces⇤ f f t S i z e ) /25e6 ) ⇤10^6) , �0.2 ,

1 . 2 ] ) ;
189 s e t ( get ( gca , ’ XLabel ’ ) , ’ S t r i n g ’ , ’ Time ( us ) ’ ) ;
190 s e t ( get ( gca , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ Packet Diagram ’ ) ;
191
192
193 %% WIFI a u t o m a t i c r e c o g n i t i o n
194 %e v e r y s a m p l e s o f 2 ,56 us with f f t S i z e =64
195 %Null s p a c e c o n s i d e r e d o f 6 s a m p l e s ����> 15 ,36 us

maximum
196 %however we can c o n s i d e r t h e f i r s t and t h e l a s t

s a m p l e s a s a s i n g l e c o n t r i b u t i o n
197 %a v e r a g e ����> 12 ,8 us
198 %an a c c e p t e d I n t e r F r a m e must be a s i z e o f 5 or 6

s a m p l e s .
199
200 i = 0 ; %c o u n t e r v a r i a b l e
201 f i v e _ I F =0; %I n t e r F r a m e o f 5 s a m p l e s
202 s i x _ I F =0; %I n t e r F r a m e o f 6 s a m p l e s
203 z = 0 ; %W I F I p a c k e t s c o u n t e r
204 wi f i_packe ts = [ ] ; %W I F I p a c k e t s ma t r i x
205 for n=1 : length ( captures3 )
206 i f ( captures3 ( n ) ==1 )
207 i = i +1;
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208 %90 s a m p l e s i s t h e t h r e s h o l d t o be e n s u r e t h a t b e f o r e
t h e IF we had a p a c k e t . About 230 us

209 e l s e i f ( captures3 ( n ) ==0 && i <=90 )
210 i =0;
211 e l s e i f ( captures3 ( n ) ==0 && i >90 )
212 %D i c r i m i n a t i o n be tween t h e 5 I F s and t h e 6 I F s
213 %a f t e r e v e r y r i g h t I n t e r F r a m e we s a v e t h e d u r a t i o n o f

t h e p a c k e t b e f o r e in a ma t r i x
214 i f ( ( captures3 ( n+1) ==0)&&(captures3 ( n+2) ==0)

&&(captures3 ( n+3) ==0)&&(captures3 ( n+4) ==0)
&&(captures3 ( n+5) ==0)&&(captures3 ( n+6) ==1) )

215 s i x _ I F = s i x _ I F +1;
216 z = z +1;
217 wi f i_packe ts ( z ) = i ;
218 e l s e i f ( ( captures3 ( n+1) ==0)&&(captures3 ( n+2)

==0)&&(captures3 ( n+3) ==0)&&(captures3 ( n+4)
==0)&&(captures3 ( n+5) ==1) )

219 f i v e _ I F = f i v e _ I F +1;
220 z = z +1;
221 wi f i_packe ts ( z ) = i ;
222 end
223
224 i =0;
225 end
226 end
227
228 %C o n v e r t i o n s a m p l e s t o t ime ( us )
229 wi f i_packe ts = wi f i_packe ts . ⇤ 2 . 5 6 ;
230
231 %% SIFS r e c o g n i t i o n stamp
232 i f ( ( f i v e _ I F + s i x _ I F ) > 0)
233 f p r i n t f ( ’ WIFI r e c o g n i t i o n based on Short

InterFrame Space\n ’ ) ;
234 f p r i n t f ( ’ %d IF of 5 samples and %d IF of 6

samples\n ’ , f i v e _ I F , s i x _ I F ) ;
235 % 5 s a m p l e s ����> 2 .56⇤4 = 10 .24 us
236 % 6 s a m p l e s ����> 2 .56⇤5 = 12 .80 us
237 %% c a l c u l a t i n g t h e a v e r a g e and t h e v a r i a n c e o f t h e

I F s
238 average_IF = ( ( f i v e _ I F ) ⇤ ( 1 0 . 2 4 ) + ( s i x _ I F ) ⇤ ( 1 2 . 8 0 )

) / ( f i v e _ I F + s i x _ I F ) ;
239 var_IF = ( ( f i v e _ I F ⇤(10.24 � average_IF ) ^2) + ( s i x _ I F

⇤(12.80 � average_IF ) ^2) ) / ( f i v e _ I F + s i x _ I F ) ;
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240 f p r i n t f ( ’ IF average : %f us \n IF var iance : %
f us\n\n ’ , average_IF , var_IF ) ;

241 f p r i n t f ( ’%f s analyzed\n\n ’ , len/sampleRate )
242
243 %% BoxPlo t o f t h e WIFI p a c k e t l e n g t h s
244 f igure ( 4 ) ;
245 boxplot ( wi f i_packe ts ) ;
246 %s e t t i n g a x i s s c a l e s and l a b e l s
247 s e t ( get ( gca , ’ XLabel ’ ) , ’ S t r i n g ’ , ’ Packet recognized ’

) ;
248 s e t ( get ( gca , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ WIFI packets

length [ us ] ’ ) ;
249
250 %% Mean WIFI p a c k e t s l e n g t h
251 disp ( [ ’ Average WIFI data packets : ’ num2str (

mean ( wi f i_ pac ke ts ) ) ’ us ’ ] ) ;
252 %d i s p ( [ ’ V a r i a n c e WIFI d a t a p a c k e t s : ’ num2str (

var ( w i f i _ p a c k e t s ) ) ’ us ’ ] ) ;
253 end
254
255
256 %% B l u e t o o t h p a c k e t s r e c o g n i t i o n
257
258 %% a n o t h e r c o r r e c t i o n o f 3 / 4 s a m p l e s .
259 %P o s s i b l e b e c a u s e t h e l e n g t h o f t h e B l u e t o o t h p a c k e t s

and acknowledgement s i s l o n g e r
260 for n=1 : ( length ( captures3 ) �5)
261 i f ( ( captures3 ( n ) ==1)&&(captures3 ( n+1) ==0)&&(

captures3 ( n+2) ==0)&&(captures3 ( n+3) ==0)&&(
captures3 ( n+4) ==1) )

262 captures3 ( n+1) = 1 ;
263 captures3 ( n+2) = 1 ;
264 captures3 ( n+3) = 1 ;
265 e l s e i f ( ( captures3 ( n ) ==1)&&(captures3 ( n+1) ==0)&&(

captures3 ( n+2) ==0)&&(captures3 ( n+3) ==0)&&(
captures3 ( n+4) ==0)&&(captures3 ( n+5) ==1) )

266 captures3 ( n+1) = 1 ;
267 captures3 ( n+2) = 1 ;
268 captures3 ( n+3) = 1 ;
269 captures3 ( n+4) = 1 ;
270 end
271 end
272
273 %i n v e r s e c o r r e c t i o n o f 3 / 4 s a m p l e s .
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274 for n=1 : ( length ( captures3 ) �5)
275 i f ( ( captures3 ( n ) ==0)&&(captures3 ( n+1) ==1)&&(

captures3 ( n+2) ==1)&&(captures3 ( n+3) ==1)&&(
captures3 ( n+4) ==0) )

276 captures3 ( n+1) = 0 ;
277 captures3 ( n+2) = 0 ;
278 captures3 ( n+3) = 0 ;
279 e l s e i f ( ( captures3 ( n ) ==0)&&(captures3 ( n+1) ==1)&&(

captures3 ( n+2) ==1)&&(captures3 ( n+3) ==1)&&(
captures3 ( n+4) ==1)&&(captures3 ( n+5) ==0) )

280 captures3 ( n+1) = 0 ;
281 captures3 ( n+2) = 0 ;
282 captures3 ( n+3) = 0 ;
283 captures3 ( n+4) = 0 ;
284 end
285 end
286
287 %% I n t e r a r r i v a l Check ing
288 % ( not a c t i v e )
289 % i = 0 ;
290 % i n t e r = 0 ;
291 % f o r n=1 : l e n g t h ( c a p t u r e s 3 )
292 % i f ( c a p t u r e s 3 ( n ) == 0 )
293 % i = i +1;
294 % e l s e i f ( c a p t u r e s 3 ( n ) ==1 && i >242 && i <247 )
295 % i =0;
296 % i n t e r = i n t e r + 1 ;
297 % e l s e
298 % i =0;
299 % end
300 % end
301
302 %% NULL, o n e s l o t , t h r e e s l o t and f i v e s l o t r e c o g n i z e (@

1 MS/ s )
303
304 i = 0 ;
305 NULL = 0 ;
306 o n es l o t = 0 ;
307 t h r e e s l o t = 0 ;
308 f i v e s l o t = 0 ;
309 one_matrix = [ ] ;
310 three_matr ix = [ ] ;
311 f i v e _ m a t r i x = [ ] ;
312 for n=1 : length ( captures3 )
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313 i f ( captures3 ( n ) ==1 )
314 i = i +1;
315 %%NULL 126 us ����> 49 _50_51 s a m p l e s
316 e l s e i f ( captures3 ( n ) ==0 && i <52 && i >48 )
317 i =0;
318 NULL = NULL + 1 ;
319 %%o n e s l o t 126 us t o 366 us �����> 143 _144_145

s a m p l e s
320 e l s e i f ( captures3 ( n ) ==0 && i <146 && i >48 )
321 o n es l o t = o n es l o t + 1 ;
322 one_matrix ( o n es l o t ) = i ;
323 i =0;
324 %%t h r e e s l o t 1250 t o 1622 us
325 e l s e i f ( captures3 ( n ) ==0 && i <636 && i >486 )
326 t h r e e s l o t = t h r e e s l o t + 1 ;
327 three_matr ix ( t h r e e s l o t ) = i ;
328 i =0;
329 %%f i v e s l o t 2500 t o 2870 us
330 e l s e i f ( captures3 ( n ) ==0 && i <1124 && i >974 )
331 f i v e s l o t = f i v e s l o t + 1 ;
332 f i v e _ m a t r i x ( f i v e s l o t ) = i ;
333 i =0;
334 e lse
335 i =0;
336 end
337 end
338
339 %c o n v e r s i o n s a m p l e s t o t ime
340 one_matrix = one_matrix . ⇤ 2 . 5 6 ;
341 three_matr ix = three_matr ix . ⇤ 2 . 5 6 ;
342 f i v e _ m a t r i x = f i v e _ m a t r i x . ⇤ 2 . 5 6 ;
343
344 %% NULL r e c o g n i t i o n stamp
345 i f (NULL > 0)
346 f p r i n t f ( ’\n\n ’ ) ;
347 f p r i n t f ( ’ Bluetooth r e c o g n i t i o n based on NULL

packets (1 Mb/s ) \n ’ ) ;
348 f p r i n t f ( ’ %d NULL packets\n %d o n es l o t packets

\n ’ , NULL, o ne s l o t ) ;
349 f p r i n t f ( ’ %d t h r e e s l o t packets\n %d f i v e s l o t

packets\n\n ’ , t h r e e s l o t , f i v e s l o t ) ;
350 disp ( [ ’ Average o ne s l o t packets : ’ num2str (mean (

one_matrix ) ) ’ us ’ ] ) ;
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351 disp ( [ ’ Average t h r e e s l o t packets : ’ num2str (
mean ( three_matr ix ) ) ’ us ’ ] ) ;

352 disp ( [ ’ Average f i v e s l o t packets : ’ num2str (mean
( f i v e _ m a t r i x ) ) ’ us ’ ] ) ;

353 f p r i n t f ( ’\n ’ ) ;
354 disp ( [ num2str ( len/sampleRate ) ’ s analyzed ’ ] ) ;
355 f p r i n t f ( ’\n ’ ) ;
356 end
357
358 %% BoxPlo t o f o n e s l o t range p a c k e t s t o a n a l y z e t h e

l e n g t h d i s t r i b u t i o n
359 %and t o u n d e r l i n e any d i f f e r e n c e from t h e WIFI BoxPlo t
360 f igure ( 5 ) ;
361 boxplot ( one_matrix ) ;
362 s e t ( get ( gca , ’ XLabel ’ ) , ’ S t r i n g ’ , ’One s l o t range [126 to

366 us ] ’ ) ;
363 s e t ( get ( gca , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ Packet durat ion ( us ) ’ )

;
364
365 %% Check o f F i l e T r a n s m i s s i o n p a c k e t d u r a t i o n
366 blueACK=0;
367 blueONE=0;
368 blueTHREE=0;
369 blueFIVE =0;
370 blue1 =0;
371 blue2 =0;
372 blue3 =0;
373 for n=1 : length ( captures3 )
374 i f ( captures3 ( n ) ==1 )
375 i = i +1;
376 %%ACK t y p e 4 8 . 6 us t o 60 us a b o u t ����> 19�24

s a m p l e s
377 % 2 . 1 t o 3 MS/ s
378 e l s e i f ( captures3 ( n ) ==0 && i <26 && i >17 )
379 i =0;
380 blueACK = blueACK + 1 ;
381 %%o n e s l o t t y p e 174 us ����> 68 s a m p l e s
382 % 2 . 1 MS/ s
383 e l s e i f ( captures3 ( n ) ==0 && i <71 && i >65 )
384 i =0;
385 blueONE = blueONE + 1 ;
386 %%t h r e e s l o t t y p e 7 7 0 . 5 6 / 7 7 3 . 1 2 us ������> 301�302

s a m p l e s
387 % 2 . 1 MS/ s
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388 e l s e i f ( captures3 ( n ) ==0 && i >298 && i <305 )
389 blueTHREE = blueTHREE + 1 ;
390 i =0;
391 %%f i v e s l o t t y p e 1366/1367 us ������> 533�534

s a m p l e s
392 % 2 . 1 MS/ s
393 e l s e i f ( captures3 ( n ) ==0 && i >530 && i <537 )
394 blueFIVE = blueFIVE + 1 ;
395 i =0;
396 %%f i r s t t y p e 307 .2 us / 309 .8 us ����> 119

_120_121_122 s a m p l e s
397 e l s e i f ( captures3 ( n ) ==0 && i <123 && i >118 )
398 i =0;
399 blue1 = blue1 + 1 ;
400 %%s e c o n d t y p e 811 .5 us �����> 317 s a m p l e s
401 e l s e i f ( captures3 ( n ) ==0 && i >315 && i <319 )
402 blue2 = blue2 + 1 ;
403 i =0;
404 %%t h i r d t y p e 924 .16 us ������> 361 s a m p l e s
405 e l s e i f ( captures3 ( n ) ==0 && i >359 && i <363 )
406 blue3 = blue3 + 1 ;
407 i =0;
408 e lse
409 i =0;
410 end
411 end
412
413 %% F i l e p a c k e t s stamp
414 i f ( blueACK > 0 )
415 f p r i n t f ( ’\n ’ ) ;
416 f p r i n t f ( ’ Bluetooth r e c o g n i t i o n based on ACK

packets ( 2 . 1 to 3 Mb/s ) \n ’ ) ;
417 disp ( [ ’ Bluetooth F i l e Acknowlegments ( 2 . 1 to 3

Mb/s ) : ’ num2str ( blueACK ) ] ) ;
418 disp ( [ ’ Bluetooth OneSlot packets ( 2 . 1 Mb/s ) : ’

num2str ( blueONE ) ] ) ;
419 disp ( [ ’ Bluetooth ThreeSlot packets ( 2 . 1 Mb/s ) :

’ num2str ( blueTHREE ) ] ) ;
420 disp ( [ ’ Bluetooth F i v e S l o t packets ( 2 . 1 Mb/s ) : ’

num2str ( blueFIVE ) ] ) ;
421 disp ( [ ’ Bluetooth Other packets ( in t o t a l ) : ’

num2str ( blue1+blue2+blue3 ) ] ) ;
422 f p r i n t f ( ’\n ’ ) ;
423 disp ( [ num2str ( len/sampleRate ) ’ s analyzed ’ ] ) ;
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424 f p r i n t f ( ’\n\n ’ ) ;
425 end
426
427
428
429
430
431 %% R e p o r t s t a t s
432 timetaken = toc ;
433 s t r = [ ’ Process ing took ’ num2str ( t imetaken ) ’ seconds

f o r f i l e : ’ f i lename ] ;
434 disp ( s t r )
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ABBREVIATIONS AND
ACRONYMS

ISM Industrial Scientific and Medical
USRP Universal Software Radio Peripheral
WPAN Wireless Personal Area Network
FHSS Frequency Hopping Spread Spectrum
GFSK Gaussian Frequency Shift Keying
EDR Enhanced Data Rate
PSK Phase Shift Keying
AP Access Point
DSSS Direct Sequence Spread Spectrum
DBPSK Differential Binary Phase Shift Keying
DQPSK Differential Quadrature Phase Shift Keying
CCK Code Complementary Keying
IFS InterFrame Spaces
SIFS Short InterFrame Space
ACK Acknowledgment
ED Energy Detector
SED Short-Term Energy Diagram
FFT Fast Fourier Transform
AWGN Additive White Gaussian Noise
NP Neymar-Person
FA False Alarm probability
ROC Receiver Operating Curve
ADC Analog-to-Digital Converter
DFT Discrete Fourier transform
SDR Software Defined Radio
DDC Digital Down Converter
USB Universal Serial Bus
FPGA Field Programmable Gate Array
DAC Digital-to-Analog Converter
RF Radio-Frequency
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IF Intermediate Frequency
GigE Gigabit Ethernet
GRC GNU Radio Companion
DSP Digital Signal Processing
GUI Graphical User Interface
ASIC Application Specific Integrated Circuit
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