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INTRODUCTION

In this thesis we address the problem of finding, mainly in terms of BER, limitations
and strenghts of Time Reversal, a technique found in acoustics [DRF95] [Fin+09]
and applied and further developed in communications and in IR-UWB [DBG04]
[WS00].

TR has spatial and temporal focusing properties (for an overview and other results
on MUI and positioning, see for example [JFB11] and [DN+]). However, the energy
collected by a RAKE receiver has an asymptotic value that depends on the peculiar
UWB channel characteristics. This limitation is investigated by means of point process
theory. The general theory of point process can be found in [CI80] [DVJ08] [Str10].
Its application to the Generalized Saleh-Valenzuela channel [SV87] is treated in
[GH06]. An example of applicability of this approach is shown in [HG07]. The model
of the channel is the ieee 802.15.3a [Foe02] [Mol+05].

As a consequence, TR may be used for outperforming a system with an all -RAKE
as well as reducing the fingers of the RAKE. We may aptly change the number of taps
in TR and the number of fingers in RAKE, employing both partial TR and RAKE,
without any loss in performance. The trade-off between complexity and performance
has been already treated in [PFDB09]. We develop here a similar investigation
under a power constraint and propose a simple trade-off for minimizing the average
complexity.

Although TR provides several undoubted advantages, further investigations are
needed on the robustness of this technique. We study the effects on BER of an error
(or perturbation) on the precoder of TR, in analogy to existing studies on RAKE.

The following is the structure of the document:

In the first chapter we investigate the trade-off between the complexity of trans-
mitter and receiver and performance and the intrinsic limitation in the energy
that can be collected by the RAKE of IR-UWB systems.

In the second chapter we address the problem of studying how perturbations in
TR may affect the performance of a single user as well as of a network.

Two appendices conclude this work, the first summarizing the results and the
second showing the main codes.
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TRADE-OFF ON THE PERFORMANCE OF TR/RAKE
SYSTEMS

Summary

In this chapter we address the problem of finding a trade-off on
the complexity of the transmitter and the receiver of a uwb com-
munication system over a multipath fading channel. We focus on a
fixed transmit-receive processing scheme, namely a Time-Reversal
precoder at the transmitter and a (sub)optimal beamforming at
the receiver employing a (Selective)All-RAKE.

Our contribution

In order to switch the complexity from the receiver to the trans-
mitter, we analyse the performance of the system in terms of SNR
and BER varying the number of taps K of the precoder and the
number of fingersM of the equaliser. We find the trade-off between
these numbers in a generalized Saleh-Valenzuela channel with L
paths under a power constraint. We sketch an optimal solution
under a specific design criteria, namely the minimization of the
total number of taps and fingers.

§1.1 The basic model.

1.1.1 Modulator. The uwb communication system we consider (see Figure 1.1
on the following page) adopts an Impulse-Radio signaling scheme, meaning that
the ultrawide bandwidth characteristic is obtained radiating a (train of) basic pulse
waveform g(t) of very short duration, with a compact support in the chip interval
[0, TC]. We focus on binary signaling schemes, both orthogonal and antipodal, in
particular ppm and pam respectively. In general, the wireless access in a network
with many transmitters and receivers is provided by a time-hopping code (inherently
periodic, of NP say), uniformly distributed in U [0, NH] ∩ Z, that delays g(t) in one of
the NH chips composing a frame (TF = NHTC). Thus, the transmitter has a (fixed)
vector c = [c0, . . . , cNP−1]T of discrete i.i.d. uniform random variables. For notational
convenience, in the following we will use ci instead of ci mod NP .

Furthermore, in order to introduce redundancy, the modulator has the ability of
coding a bit of information into NS symbols, e.g. with a repetition code (in that case,
Tb = NSTF).

The transmitted signal can be written as follows

s(t) =
√
Eb
∑

n≥0

g(t− nTb; bn)
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Figure 1.1: Basic model. (K,L,M) denotes that the prefilter has K taps, the channel has
L paths and the RAKE has M fingers.

where

g(t; bn) =





NS−1∑

i=0

(−1 + 2bn)g(t− iTF − cnNs+iTC) for pam ,

NS−1∑

i=0

g(t− iTF − cnNs+iTC − bnε) for ppm .

Hereinafter in this chapter, we will consider NS = 1. Furthermore, adopting a block
transmission paradigm, w.l.o.g. we can rewrite the previous waveforms for the first
information bit only:

g(t; b) =

{
(−1 + 2b)g(t− cTC) for pam ,
g(t− cTC − bε) for ppm .

Thus, regardless of the time-hopping shift, in the pam case, the basic pulse is simply
g(t). Because of the dimensionality of the signal space (that is 1), the two possible
signals to be transmitted are:

sm(t) = (−1 + 2m)g(t) , m = 0, 1 ,

and a base for this space is (for instance) given by B = {s1(t)}.
In the ppm case, the signals are:

sm(t) = g(t−mε), m = 0, 1 .

If ε ≥ TM, they are orthogonal, being TM the duration of the pulse. Anyway, the
signal space has dimension 2, and a base is (for instance) given by B = {s0(t), s1(t)}.
1.1.2 Channel. The channel statistic for uwb communication is unique due to the
ultra high resolution of receivers. Both ieee 802.15.3a and ieee 802.15.4a channel
models are based on the seminal work of Saleh and Valenzuela. We discuss the channel
thoroughly later, whereas here we aptly describe it in a by far simpler way, that is as
much as we need now:

h(t) =

L∑

`=1

α`δ(t− τ`) .

Note 1.1. We stress that L is the number of paths of the channel .
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1.1.3 Precoder. We apply here the time-reversal concept introducing a filter that
is nothing but the channel reversed (= inverted) in time:

p(t) =

L∑

k=1

αkδ(t+ τk) .

We don’t care about the causality of this filter, but it is evident that in a real
experiment it would be necessary a delay (at least) equals to τL.

In general, we could use a lesser complex filter with K ≤ L taps, selecting only
the K strongest paths of h(t). In this case we have:

p(t) =
∑

k∈K
αkδ(t+ τk) ,

where K ⊆ {1, 2, . . . , L}.
Note 1.2. We stress that K is the number of taps of the prefilter .

Note 1.3. To carry out a correct comparision of performance among various systems,
we introduce a power constraint for the transmitter, namely, the power sent is constant.
We taking into account this as follows. Let be x(t) the signal sent, thus (see Figure 1.1
on the previous page)

x(t) = C(s ∗ p)(t) = C
∑

k∈K
αk s(t+ τk) , C ∈ R+ .

Assumption 1.1.We assume that g(t) has a support [0, TM] with

0 < TM ≤ min
0≤i,j≤L
i 6=j

|τi − τj | .

We may paraphrase this condition stating that the smallest inter-arrival time is greater
than the pulse width. It is clear that this is not always true, nonetheless it is a
common hypotesis.

With this premise, we can straightforwardly compute the energy of x(t)

Ex = C2Es
∑

k∈K
α2
k

The power constraint reads as Ex = Es, so

C =
1√∑

k∈K
α2
k

.

Remark 1.1. This constrain implies that

max
t≥0
|he(t)| =

√∑

k∈K
α2
k .



1.1 the basic model. 6

1.1.4 Selective RAKE. The optimum demodulator for processing a wideband
signal is known as RAKE correlator. It was found by Price and Green in 1958 and it is
the filter matched to the whole useful (= without noise and interference) signal at the
receiver. In our case, let us call y(t) = (x∗h)(t) the useful signal and r(t) = y(t)+n(t)
the received signal corrupted by the WGN n(t) with variance σ2

n. Then the RAKE
maximizes the SNR. We will return to this point later stressing that it is nothing but
a Maximal-Ratio Combiner (MRC), that historically, however, was found later (in
1959 by Brennan).

In general, an S-RAKE with M fingers choose the M strongest path of the
equivalent channel he(t) = C(h ∗ p)(t), given by:

he(t) =
1√∑

k∈K
α2
k

∑

k∈K

L∑

`=1

αkα`δ(t− τ` + τk).

1.1.5 Signals. We now rewrite this signal in order to emphasize some important
properties. Let us start noting that we can write he(t) with a special partition of the
set of indices {1, . . . , L} × K:

he(t) =
1√∑

k∈K
α2
k

{[∑

k∈K
α2
k

]
δ(t)

+
∑

k∈K
αk
∑

`∈K
`6=k

α`δ(t− τ` + τk)

+
∑

k∈K
αk
∑

`/∈K

α`δ(t− τ` + τk)

}
.

Let us explore the three terms in parentheses.

First term. With a full -TR (K = L), he(t) would be the (normalized) autocorrela-
tion of the channel, the first term representing its energy. With a partial -TR,
the first term is by far the greatest, but it decreases monotonically with the
cardinality of K (= number of taps considered). This means that, with M = 1
(1-finger RAKE), the first term would represent the chosen path of the equivalent
channel. We expect a performance increase with K.

Second term. This term is composed of K(K − 1) signals. It is an even function
and represents a portion of the autocorrelation function that we would obtain if
K = L. We may rewrite that in the following way:

∑

k∈K
αk
∑

`∈K
6̀=k

α`δ(t− τ` + τk) =
∑

k∈K
αk
∑

`∈K
`>k

α`[δ(t− τ` + τk) + δ(t+ τ` − τk)] .

Third term. This term is composed of K(L−K) signals of minor entity. Note that
the coefficients of this third term are always lower (in absolute value) that those
in the second one. This implies that an M -RAKE, with M ≤ K(K − 1) + 1,
would choose the paths included in the firsts two terms, discarding those in the
third one.

Note 1.4. Fixing L, we always have the following bounds: K ≤ L and M ≤ 1 +
K(K − 1) +K(L−K) = 1 +K(L− 1).
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§1.2 A simple case (K,L, 1).

In this section1 we prove that (K,L, 1) ∼ (1, L,K), ∀K ≤ L, thus a partial -TR
with a 1-RAKE has the same performance of a partial -RAKE without TR, provided
that they have the same number of taps.

In order to do this, we fix some notation with a well known and simple example.

Example 1.1 (binary antipodal and binary orthogonal signaling schemes).
bpsk assigns to a bit m the following signal:

sm(t) = (−1 + 2m)Ag(t) , m = 0, 1 .

The signal space, namely S = Span{s0(t), s1(t)} = Span{s1(t)}, has dimS = 1 and a
basis is given by B = {φ1(t)}, with φ1(t) = s1(t)/

√
A. We have then to correlate with

the basis functions and estimate the symbol (or bit, in this case) sent by means of a ML
criterion. Thus, to demodulate such a signal, we may have only one correlator (with
s1(t)) and decide which bit it was likely sent looking at the sign. Nevertheless, we may
also use two correlators (with φ0(t) and φ1(t)) obtaining two samples (or correlation
metrics), say CM0 and CM1, and decide looking at the sign of D = CM1−CM0. To
compute the BEP in AWGN, w.l.o.g. we can think to send the bit 1, evaluating the
BEP as Pr{D < 0}. Thus

D = CM1−CM0 = 2A+ 〈n(t), s1(t)〉 − 〈n(t), s0(t)〉 = 2A+ 2ν1 ,

with ν1 = 〈n(t), s1(t)〉 ∼ N (0, A2σ2
n), and hence the ratio between the powers of the

useful part (σ2
a) and the noise part (σ2

ν) is

σ2
a

σ2
ν

=
4A4

4σ2
nA

2
=
A2

σ2
n

=⇒ Pe = Q

(
σa
σν

)
= Q(

√
2γb) , γb =

A2

2σ2
n

.

We can repeat this computation with a binary orthogonal signaling scheme, such as
ppm . With similar notations, we have

D = CM1−CM0 = A+ 〈n(t), s1(t)〉 − 〈n(t), s0(t)〉 = A+ ν1 − ν0 .

Now (ν1 − ν0) ∼ N (0, 2A2σ2
n) and

σ2
a

σ2
ν

=
A4

2σ2
nA

2
=

A2

2σ2
n

=⇒ Pe = Q

(
σa
σν

)
= Q(

√
γb) , γb =

A2

2σ2
n

.

Thus, we may write the BEP of the generic binary signaling scheme as follows:

Pe = Q
(√

(1− ρ)γb

)
, γb =

A2

2σ2
n

and ρ =
〈s0(t), s1(t)〉
〈s1(t), s1(t)〉 .

This concludes the example. ♦
Let us find the BEP in the (K,L, 1) case. The signal received (as illustrated in

Figure 1.1 on page 4) is

rm(t) =

[∑

k∈K
α2
k

]1
2

sm(t) +
1√∑

k∈K
α2
k

∑

k∈K

L∑

`=1
`6=k

αkα`sm(t− τ` + τk) + n(t) ,

1We write (K,L,M) ∼ (K′, L′,M ′) to denote two configurations that have the same performance
in terms of a specified parameter (e.g. SNR or BER).
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where n(t) is a WGN with variance σ2
n and sm(t) is the signal that modulates a bit

m. A 1-finger RAKE will correlate this signal with the highest path, i.e. likely2 the
correlation metric will be (we drop the explicit reference to the time-hopping code)

CM1 =

〈
r1(t),

[∑

k∈K
α2
k

]1
2

s1(t)

〉
=: A+ ν

where

A := Es
∑

k∈K
α2
k and ν :=

〈
n(t),

[∑

k∈K
α2
k

]1
2

s1(t)

〉
∼ N

(
0, σ2

nEs
∑

k∈K
α2
k

)
.

It yields

γb :=
A2

2σ2
ν

=
Es
∑

k∈K α
2
k

N0
, σ2

n := N0/2 ,

that is the same well-known result of a selective K-RAKE.

Remark 1.2. This result shows the remarkable property that, having fixed L, in the
plane (K,M), K,M ≥ 1, an iso-BEP or iso-energy curve that starts in (k, 1) will
finish in (1, k), irrespective of the modulation type (ppm or pam).

§1.3 The general case (K,L,M).

A method to approach the general case is to think of g(t) as a spike, thus of x(t)
as a spike train. From this perspective, the RAKE simply collects the energy of the M
greatest paths (in absolute value) of the equivalent channel. The set of the amplitudes
of all paths can be partitioned in the following way:

{∑
k∈K α

2
k

}
,

{αkα`} , k ∈ K, ` ∈ K, ` 6= k,
{αkα`} , k ∈ K, ` /∈ K .

It is not developed here a general framework to deal with this general problem.
Nonetheless, we will present at the end of the chapter an insight into analytical
approaches.

Remark 1.3. If M = 1, the first set is chosen. The energy collected by the RAKE is

E = Es
K∑

`=1

α2
` .

It is worth to note that, in this case, a TR precoder is optimum in the sense that
it maximizes the SNR achievable at the receiver. Let us formulate the optimization
problem. Suppose that p(t) can be written as

p(t) =
∑

k∈K
pkδ(t+ τk) , pk ∈ R .

2As far as the right term in the inner product is the highest. We can recognise that it would be
pick of the normalized (auto)correlation of the channel if K ≡, that is of course the maximum of the
signal in that case. In other cases, it can be shown that there is an evanescent probability for the
alternative hypotesis.
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The sent signal is

x(t) = C(s ∗ p)(t) = C
∑

k∈K
pks(t+ τk) ,

and the energy normalization take the form

Ex = C2Es
∑

k∈K
p2
k ≡ Es =⇒ C =

1√∑

k∈K
p2
k

.

When this signal pass through the multipath channel we have

y(t) := (x ∗ h)(t) =
1√∑

k∈K
p2
k

[∑

k∈K
pkαk

]
s(t) + · · · ,

with the dots stating for minor terms that would be likely3 discarded by a 1-finger
RAKE. The energy collected is

E = Es

[∑

k∈K
pkαk

]2

∑

k∈K
p2
k

and we want to maximize it in the pk’s in order to maximize the SNR at the receiver.
Let us set α = [αk]Tk∈K and p = [pk]Tk∈K . These are vectors in RK . In our framework,
we leave pk unbounded because we set up later the normalization with C; however,
we may regard the ratio as follows

[∑

k∈K
pkαk

]2

∑

k∈K
p2
k

=




∑

k∈K
αk

pk√∑

j∈K
p2
j




2

=

[∑

k∈K
αkβk

]2

,

constraining the βk’s to be finite in norm. These coefficients may be seen as the Dirac
weights of β(t) := Cp(t). Now we can state the optimization problem as follows

(P)

{
max
β

|βTα|2

s.t. ‖β‖ = 1 .

The solution come by a straightforward application of the Cauchy-Schwarz inequality,
β? = α/‖α‖.
Remark 1.4. If M = 1 + K(K − 1), the union of the firsts two sets is chosen. The
energy collected by the RAKE is

E = Es
1∑

k∈K
α2
k




(∑

k∈K
α2
k

)2
+
∑

i∈K

∑

j∈K
j 6=i

α2
iα

2
j


 = Es



∑

k∈K
α2
k +

1∑

k∈K
α2
k

∑

i∈K

∑

j∈K
j 6=i

α2
iα

2
j


 .

3It remains valid the note 2 on the previous page.
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Parameter Value Units

λ (ray arrival rate) 2 [GHz]
Λ (cluster arrival rate) 20 [MHz]
γ (ray decay factor) 2 [ns]
Γ (cluster decay factor) 5 [ns]
σ1 (cluster fading std. dev.) 3.3941 [dB]
σ2 (ray fading std. dev.) 3.3941 [dB]

Table 1.1: Channel model parameters.

Remark 1.5. If K = L and M = 1 + L(L− 1), both maximum SNR and energy are
achieved. The latter is

E = Es
1

L∑

`=1

α2
`




(
L∑

`=1

α2
`

)2
+

L∑

i=1

L∑

j=1
j 6=i

α2
iα

2
j


 .

For future reference, we rewrite the terms in parentheses. The first term can be viewed
as follows

(
L∑

`=1

α2
`

)2
=

L∑

`=1

L∑

j=1

α2
`α

2
j ,

while the second term can take the form
L∑

i=1

L∑

j=1
j 6=i

α2
iα

2
j =

L∑

i=1

L∑

j=1

α2
iα

2
j −

L∑

`=1

α4
` .

Now the whole parenthesis can be written as
(

L∑

`=1

α2
`

)2
+

L∑

i=1

L∑

j=1
j 6=i

α2
iα

2
j = 2

L∑

i=1

L∑

j=1

α2
iα

2
j −

L∑

`=1

α4
`

This form will be very useful.

§1.4 Simulation results.

In this section, we turn to give an overview on results from simulations of a
th-uwb system in an ieee 802.15.3a channel. The parameters adopted are listed in
Table 1.1.

Here are presented results of th-bpam-uwb for BER; and th-bpam-uwb and
th-bppm-uwb (that yields the same results) for the estimation of the energy collected
by the RAKE receiver. BER with ppm follows the same trajectories with the usual 3
dB gap with respect to pam .

In Figure 1.2 and 1.3, it is evident the monotonicity of both the BER and
the energy surfaces with respect to each parameter. In the latter, we compare the
iso-energy and iso-BER curves. As already stated via theoretical computations, we
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Figure 1.2: Average BER estimation (γb = 5 [dB]).
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Figure 1.4: Average energy collected by an M -RAKE varying the number of taps K in the
prefilter.

note that the generic curve in the plane (K,M) that starts in (k, 1) will end in (1, k).
This suggests an obvious rule-of-thumb that provides a fairly good fitting considering
hyperbolas as these curves.

Fixing a performance (BER or energy), we can start choosing a number c of fingers
in a system with a RAKE receiver and without TR; then we move on the curve
(k, c/k), shifting the complexity from the receiver to the transmitter. We can switch
all the complexity or just a part of it, or we can outperform the initial performance
increasing the complexity of the transmitter.

Let us find, for example, the solution of the following problem: Minimize the
total number of taps and fingers, fixing a performance. To be more specific, let be
(k,m) ∈ Z2

+ the pair denoting the number of taps and fingers employed, respectively.
Thus we want to solve the problem

{
min k +m (k,m) ∈ Z2

+ ,
s.t. km = c ,

where c is a feasible constant that depends on the performance to reach. We may
generalise this problem assigning a cost to each choice. In this case the problem
becomes

{
min ak + bm (k,m) ∈ Z2

+, a, b ∈ R+ ,
s.t. km = c

.

We will proceed embedding the problem in R2
+ and then choosing the nearest integer

pair in the lattice Z2
+, altough of course this couldn’t be the true solution (anyway,
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it would be very close to it). By elementary calculus, we find that k? =
√
bc/a,

m? =
√
ac/b and the attained minimum is 2

√
abc. If a = b = 1, the optimum number

of taps as well as fingers is
√
c.

This result, which suffers of some inaccuracy due to the extremely simple model
adopted accepting the hyperbola hypothesis, sheds some light on the problem of
finding a trade-off on the complexity between transmitter and receiver. To summarize,
a (1, L, c) system, i.e. no-TR and all -RAKE, is approximately equivalent to a system
(
√
c, L,

√
c).

In Figure 1.4 it is shown the average energy collected by the receiver in function
of the number of taps of the prefilter. The plot is normalized with respect to the
energy collected by an all -RAKE.

It is clearly visible that the energy collected by an (L,L, 1) system is the same
collected by an all -RAKE.

There exists an asymptotic energy that a system can collect. This is proven in the
next sections, which are devoted to a thorough description of the channel model and
very powerful analytic techniques based on theory of point processes.

§1.5 The channel model: a point process perspective.

We introduce the very basic concepts of point process theory in a quite informal
way. We refer the more purists to [CI80] [DVJ08] whilst the casual reader surely
would appreciate [Str10]. We pursue here a fairly intuitive line, giving a very concise,
self-contained treatment of the (only) results we need.

1.5.1 Why we are interested in point processes. The theory of point processes
is a vast and active area of probability. It finds its most powerful application in
statistics for analyzing spatial data. Our goal is discover the properties of the channel
by means of this theory.

In order to do this, we regard the channel response as follows

x(t) =

L∑

`=1

γ`s(t− τ`) =:
L∑

`=1

φ(τ`, γ`)(t) ,

having defined φ(τ`, γ`)(t) := γ`s(t− τ`). Therefore, x(t) is the sum of a function (in
this case φ : R2 → R) evaluated at random arguments (τ, γ). It is called a shot-noise
random variable. The name derives from the shot effect, in which the point of a time
process have an effect that continues for a time after the event represented by each
random point. So point processes on the line (= in R) aptly model random events in
time, such as the arrivals of customers in a queue, of particles in a Geiger counter, of
impulses in a neuron or, for us, in a receiver of electromagnetic field.

1.5.2 Point processes.

Definition 1.1 (Point process).A point process is a random countable set Π ⊂ S,
S ⊆ Rm, such that for each measurable A ⊆ S, the random variable

N(A) := #{Π ∩A}

is (almost surely) finite. C
We call S the state space. Owing to the randomness of Π, N is a random variable.

Thus, according to the basis of probability theory, we have to define a triple (Ω,F ,P)
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where Ω is a set (of elementary outcomes), F a σ-field of subset of Ω (events) and P
a probability measure that assigns a number in [0, 1] to every event, P : F → [0, 1].

A point process is a random variable whose outcome is a countable subset (= a
set of points) of S, thus it is a function

Π: Ω→ 2S

denoting with 2S the class of all countable subsets of S. A realisation of the point
process, Π(ω̄) say, is a countable subset of S.

Now, for fixed A, also N(A) is a random variable, thus it is a function

N(A) : Ω→ N , N = {0, 1, 2, . . . ,∞} .

We require this function to be measurable for each A, which allow us to work with
the measure P. Therefore, we may take A as a (bounded) Borel subset of S.
Example 1.2 (Stars at night). A pictorial example is given by the stars in the sky.
The whole sky is R2. The underlying process fix the position of the stars, thus Π(ω̄)
is the set of the visible stars (= a picture of the sky at a given time). S is the portion
of the sky you can see. 2S is the set of all possible configurations of stars in the sky
(= all possible pictures). A is a patch of the portion of the sky that you can see; then
N(A) is the number of stars in the patch. ♦

In the following, we abuse the notation writing Π instead of Π(ω) for the generic
realisation of the point process.

To go further, we have to specify the properties of the underlying process. We
restrict our discussion to Poisson point processes.

Definition 1.2 (Poisson point process).A Poisson point process is a point process Π
such that:

(i) if {Ai} is a family of disjoint subsets of S, then N(Ai) are independent, and

(ii) N(A) ∼ P(µ(A)),

where P(µ) stands for Poisson distribution with parameter µ. C
Actually, the parameter is the mean. In fact, from direct computation, if x ∼ P(µ),

then E {x} = µ. For this reason, µ(A) is called the mean measure of A. It is very
useful to provide this measure with a non-negative function λ : S → R+ such that

µ(A) =

∫

A
λ(x)dx

In general S ⊆ Rm. The function λ is called rate, intensity or density of the process
if m = 1, m = 2 or m ≥ 3, respectively. Such a function is the tool that allow us to
compute expected values of functions evaluated at process points, to the same extent
that probability density functions are employed to compute expectations of functions
of random variables. The existence of this function follows from Radon4-Nikodym5

theorem and it is also named Radon-Nikodym derivative.
Note that, at least formally, we can write

µ(A) =

∫

A
µ(dx)

4Johann Radon, austrian mathematician (1887–1956)
5Otto Nikodym, polish mathematician (1887–1974)
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such that µ(dx) = λ(x)dx.
From a genuinely elementary point of view, for Π∩A are random both the number

and the locations of points. Thus we are able to write down the p.d.f. of the number
n, that is Poissonian

pn(n) =
Λn

n!
e−Λ , Λ :=

∫

A
λ(x)dx

and the p.d.f. of the i.i.d. locations, that is uniform (this follows from the definition
of Poisson process)

pxi(xi) = λ(xi)/Λ , xi ∈ A .

Thus we can find the joint p.d.f. for Π ∩A:

pΠ∩A(n, x1; . . . , xn) = pn(n)
n∏

i=1

pxi(xi) =
1

n!
e−Λ

n∏

i=1

λ(xi) .

This is remarkable: now we are able to find the expectation of a generic function
evaluated on the Poisson process, say Φ: 2S → R, as

E {Φ} =
∑

n≥0

pn(n)

∫

Sn
Φ(x1; . . . , xn)

n∏

i=1

pxi(xi)dx1 . . . dxn .

We are interested in sums like

Φ =
∑

x∈Π∩A
φ(x) .

We could straightforwardly obtain the expectation of these sums with the previous
formula. We would find that

E {Φ} =

∫

A
φ(x)λ(x)dx =

∫

A
φ(x)µ(dx) .

This is known as (a form of) the Campbell’s theorem, but the most exciting form of
this theorem allow us to find the moment generating function (m.g.f.) of Φ, thus its
p.d.f.

MΦ(θ) = E
{

eθΦ
}

= exp

∫

A

[
eθφ(x) − 1

]
µ(dx) .

1.5.3 Marked point processes. Let Π be a Poisson process with mean measure
µ. We associate a random variable mx ∈ M (mark of x) to each point x ∈ Π. We
assume that (1 ) the distribution of mx may depend on x but not on other points of
Π, and (2 ) the mx for different x are independent.

The pair (x,mx) can be regarded as a random point x? ∈ S ×M. The totality of
points x? forms a random countable subset Π? = {(x,mx) : x ∈ Π} ⊂ S ×M. Now
the sum on the product space takes the form

Φ? =
∑

x∈Π∩A
φ(x,mx) ,

that is similar to the channel model we sketch at the beginning.
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The fundamental result is that Π? is a Poisson process on the product space S×M.
The marking theorem states that the mean measure on Π? is

µ?(A×B) =

∫∫

A×B

µ(dx)p(x, dm) ,

where p(x,m) is the p.d.f. of mx. In fact, at least formally, we have

µ?(dx× dm) = λ?(x,m)dxdm , λ?(x,m) = λ(x)p(x,m) .

The Campbell’s theorem of a marked process is a rather plain generalisation of
the basic version, that is

E
{

eθΦ
}

= exp

∫∫

A×B

[
eθφ(x,m) − 1

]
µ?(dx× dm) .

Note 1.5. It is really important to note that a marked point process is nothing but a
point process, on the product space of points and marks, with intensity function λ?.
This will be nearly fundamental for the channel model.

1.5.4 Cluster point processes. A cluster process consists of the superposition of
clusters centered at points of a parent point process, being each cluster another point
process. The parent process is called center (or centre) process, whereas the cluster
process is called subsidiary or daughter process. Each cluster is i.i.d. both from other
clusters and parent process.

1.5.5 Generalized Saleh-Valenzuela. We think of the channel as a cluster process
in the plane (τ, γ), where τ is the arrival time of paths and γ their amplitudes (or
gains). We describe the channel in accordance to the standard:

Center process .

• the center process start times τ follow a homogeneous Poisson process of
rate C (in Table 1.1 we referred it to as Λ), and

• the center process amplitudes γ follow a p.d.f. that we call fττ (γ), which
depends only on the value of the start time τ , being independent with each
other amplitude; these amplitudes may be viewed as marks of the Poisson
point process of the center start times τ , but we embed τ and γ into a
two-dimensional (Poisson) point process.

The center point process is characterized by the intensity

λc1(τ, γ) := Cfττ (γ)χ[0,+∞)(τ) .

We refer to its measure by N c
1(dτ × dγ) and mean measure by µc1(dτ × dγ). An

exception has to be made for the first path in LOS scenarios because it always
arrives at time τ = 0. Its measure will be N c

0 = χB(0, γ00), where χB(·) is the
characteristic (or indicator) function of set B (that is, χB(x) = 1 if x ∈ B and
χB(x) = 0 otherwise), and γ00 ∼ f00. In other words, it is as if we had defined
an intensity λc0(τ, γ) := δ(τ)f00(γ). The measure of the center point process is
thus

N c(B) = N c
0(B) +N c

1(B) .
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Cluster process .

• the cluster process start times s follow, conditional on the cluster start
time τ , a homogeneous Poisson process of rate R (in Table 1.1 we referred
it to as λ), and

• the cluster process amplitudes g follow a conditional p.d.f. that we call
fτs(g), which depends only on the value of the time s (other than on τ , of
course), being independent with each other amplitude; these amplitudes
may be viewed as marks of the Poisson point process of the cluster start
times s, but we embed s and g into a two-dimensional (Poisson) point
process.

The cluster point process is characterized by the conditional intensity

λr(s, g|τ, γ) := Rfτs(g)χ[τ,+∞)(s).

We refer to its measure by N r(ds×dg|τ, γ) and mean measure by µr(ds×dg|τ, γ).
All clusters are identical and independent Poisson point processes. The mean
measure can be find as follows

µri(ds× dg) =

∫∫

R2

µci (dτ × dγ)µr(ds× dg|τ, γ) , i ∈ {0, 1} .

For i = 0, that is for the first cluster, we have

µr0(ds× dg) = Rf0s(g)χ[0,+∞)(s)

whereas for i = 1, that is for successive clusters, we have

µr1(ds× dg) =

∫∫

R2

Rfτs(g)χ[τ,+∞)(s)Cfττ (γ)χ[0,+∞)(τ)dτdγ

The measure of the cluster point process is thus

N r(B) = N r
0(B) +N r

1(B) .

The augmented point process measure is then

N(B) = N c
0(B) +N c

1(B) +N r
0(B) +N r

1(B) .

It is possible to show that the following three measures,

N c
0(B) , N r

0(B) and N c
1(B) +N r

1(B) ,

are independent. We can compute expectations separately and then add up, as well
as m.g.f. and then multiply them.

The reason why we wrote fτs(·) as the p.d.f. of marks is due to the channel model
structure that set the p.d.f. of the ray (= element of the cluster process) in s of the
cluster that starts in τ to be a (1/2)-Bernoulli mixture of log-normals with second
moment equals to Ω0e−τ/τ0e−(s−τ)/s0 . In Table 1.1 on page 10 we wrote γ for s0 and
Γ for τ0.

We write Eτs{·} to denote an expectation with respect to fτs. Note that odd
moments are null and even moments are equal to those of one-sided log-normals.
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To be precise, the channel model says that all paths share the same σ2 log-normal
parameter:

g ∼ lnN (mτs, σ
2) .

In general, we can compute the nth moment as

Eτs{gn} = enmτs+n
2σ2/2 .

The channel model provides the second moment, thus

Eτs{g2} = e2mτs+2σ2 ≡ Ω0e−τ/τ0e−(s−τ)/s0 .

This relation introduces a constraint. Solving in mτs, we have

mτs = −σ2 +
1

2
ln Ω0 +

1

2

[
− τ
τ0
− s− τ

s0

]
.

We can express each moment with respect to the second one:

g(n)
τs := Eτs{gn} = Eτs{g2}n/2en(n/2−1)σ2

.

Note that we are actually interested only in even moments.

1.5.6 Channel expectations. We have already mentioned that the following are
three independent measure:

N c
0(B) , N r

0(B) and N c
1(B) +N r

1(B) .

For brevity, we will refer to them as N1(B), N2(B) and N3(B), respectively. An
expectation with respect the whole channel, say E{Φ}, can be computed as E{Φ} =
E1{Φ}+ E2{Φ}+ E3{Φ}, being Ei{Φ} the expectation with respect to the measure
Ni (= averaging with the corresponding mean measure). We have

1st component

E1{Φ} =

∫

R2

φ(s, g)δ(s)f00(g)dsdg =

∫

R
φ(0, g)f00(g)dg .

2nd component

E2{Φ} =

∫

R2

φ(s, g)Rf0s(g)χ[0,+∞)(s)dsdg .

3rd component

E3{Φ} =

∫

R2

φ(τ, γ)Cfττ (γ)χ[0,+∞)(τ)dτdγ

+

∫

R2

Cfττ (γ)χ[0,+∞)(τ)

[∫

R2

Rfτs(g)χ[τ,+∞)(s)φ(s, g)dgds

]
dτdγ .

For the m.g.f. we use the Campbell’s theorem, obtaining

1st component

MΦ
1 (θ) = E1{eθφ(0,g)} =

∫

R
eθφ(0,g)f00(g)dg .
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2nd component

MΦ
2 (θ) = exp

(∫

R2

[
eθφ(s,g) − 1

]
Rf0s(g)χ[0,+∞)(s)dsdg

)

3rd component

MΦ
3 (θ) = exp

(∫ ∞

0

∫

R

[
eθφ(τ,γ)+

∫∞
τ

∫
R[eθφ(s,g) − 1]Rfτs(g)dgds − 1

]
Cfττ (γ)dγdτ

)

The m.g.f. for Φ is M(θ) = M1(θ)M2(θ)M3(θ). Thus, to fix ideas, let be

Φ =
∑

(τ,γ)∈B

φ(τ, γ) =:

∫

B
φ(τ, γ)N(dτ × dγ) .

The nth moment of Φ will be

E{Φ} =
dnM

dθn

∣∣∣∣
θ=0

.

Now it’s only a matter of straightforward computations, which are omitted for lack of
intrinsic interest.

1.5.7 Energy bound with TR. We finally can compute the bound. In Remark 1.5
on page 10 we show that the energy collected by a full -TR/all -RAKE system is

E = Es
1

L∑

`=1

α2
`


2

L∑

i=1

L∑

j=1

α2
iα

2
j −

L∑

`=1

α4
`


 = Es

1
L∑

`=1

α2
`


2

(
L∑

i=1

α2
i

)2

−
L∑

`=1

α4
`




= Es
L∑

`=1

α2
`




2−

L∑

`=1

α4
`

(
L∑

`=1

α2
`

)2




,

whereas with a full -TR/1-RAKE we collect

E = Es
L∑

`=1

α2
` .

We define now a mean ratio as follows

ρ̄ := 2−
E

{
L∑

`=1

α4
`

}

E





(
L∑

`=1

α2
`

)2




.

The numerator is the first moment of sum of amplitudes fourth-powers, whereas the
denominator is the second moment of sum of squares. Thus, the functions φ(τ, γ)
to be used are φ(τ, γ) := γ4χ[0,+∞)(τ) and φ(τ, γ) := γ2χ[0,+∞)(τ), respectively. We
then find the m.g.f. for both cases and consequently the moments. The result is

ρ̄ = 2− 1

1 + e−4σ2
[(4Cτ0)/(2 +Rs0) + 2Rs0(1 + 2Cτ0)]

.

Adopting the channel model parameters of Table 1.1 on page 10, the numerical result
is ρ̄ ' 1.85353 that is in accordance with the simulation of Figure 1.4.
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ROBUSTNESS ANALYSIS

Summary

In this chapter we address the problem of robustness of the TR
approach. We have seen in the previous chapter that, in absence of
MUI, we can introduce a full -TR in combination with a 1-RAKE
to obtain the same performance of an all-RAKE. In the following
we assume a model for the perturbation and study its effect on
both systems. We also show simulation results in more complex
scenarios.

Our contribution

The main contribution concerns the study of the effect on BER of
an error introduced in the TR pre-filter.

§2.1 Introduction

We model the perturbation as an additive zero-mean gaussian process ξ(t) with
variance σ2

ξ . Both full -TR pre-filter (without the normalisation constant that assures
the power constraint at transmitter) and all -RAKE receiver have an impulse response
with energy equals to the channel gain, thus the pertubation may be regarded as
the error occured during the channel estimation process; otherwise, it may be just
considered as an unavoidable amplitude error of the filters, or a combination of the
two.

§2.2 Absence of interference.

2.2.1 Robustness of TR. We focus on a system with full -TR and 1-RAKE. In
absence of any error, we have already seen that the signal sent (during a signaling
period) carrying the bit 1 is

x(t) =
1

[
L∑

`=1

α2
`

]1
2

L∑

`=1

α`s1(t+ τ`) ,

where {α`} and {τ`} are the sets of channel amplitudes and delays, respectively. The
signal received is r = x∗h+n = y+n and a 1-RAKE will take the following correlation
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metric

CM1 =

〈
y(t) + n(t),

√√√√
L∑

`=1

α2
`s1(t)

〉
.

The decision will be based on the sign of this correlation metric. Let us rewrite this
in vectorial form, setting α = [α1, . . . , αL]T as the vector of channel amplitudes:

CM1 = Es|α|2 + ν , ν ∼ N (0, σ2
nEs|α|2) .

In presence of perturbation, the pre-filter amplitudes are not longer α but α+ ξ
and the signal sent is

x(t) =
1√√√√

L∑

`=1

[α` + ξ(τ`)]
2

L∑

`=1

(α` + ξ(τ`)) s(t+ τ`) .

Note the different normalisation required to assure the power constraint. The 1-RAKE
expects to find |α|s(t) as previous and the correlation metric will be

CM1 = 〈y(t), |α|s(t)〉 = Es
αT (α+ ξ)

|α+ ξ| |α|+ ν , ν ∼ N
(
0, σ2

nEs|α|2
)
.

In other words, the decision is now based on the sign of
[
√
Es
αT (α+ ξ)

|α+ ξ| + n

]
√
Es|α| .

As might be expected, with an evanescent perturbation, ξ → 0, we obtain the
previous result. Our goal is find the pdf of the perturbed term, that will reveal us
some insight into the effects that it produces.
-pdf of perturbed term. We want to find the pdf of

Υ :=
αT (α+ ξ)

|α+ ξ| ,

given α and assuming ξ ∼ N (0, σ2
ξI), that is, a vector of L i.i.d. samples of the

process ξ(t).
We start considering

ζ :=
Υ

|α| =
αT (α+ ξ)

|α||α+ ξ| ,

that has a scaled pdf with respect to Υ.
The key point is the application of an orthogonal transformation that drastically

simplifies the ratio without changing its value. We can think of α as the coordinates of
a vector of RL with respect to the canonical base B. We can find another orthonormal
base B′ such that only the first coordinate of the vector is non-null. This is feasible
via Gram-Schimdt orthogonalization, for example. We call the matrix of the basis
changing P. It is a well-known result that P is orthogonal, P−1 = PT . As a
consequence, P realize such a kind of isometry, that is, it does not change the norm
of the transformed vector: if ξ′ = Pξ, then |ξ′| = |ξ|. Under that operator, α become
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α′ := Pα = [α′1, 0, . . . , 0]T . The last ingredient is the following: if ξ is a gaussian
r.v. with scalar covariance matrix C := σξI, then ξ′ is still gaussian with the same
covariance matrix. This is straightforward: in fact, a linear transformation of a
gaussian r.v. yields still a gaussian r.v. and its covariance matrix is

E{ξ′ξ′T } = E{(Pξ)(Pξ)T } = Pσ2
ξIP

T = σ2
ξI.

Hereinafter we do not longer write vectors and matrices in boldface. We can write
the ratio as follows:

ζ =
αT (α+ ξ)

|α||α+ ξ| =
αTP TP (α+ ξ)

|Pα||P (α+ ξ)| =
α′T (α′ + ξ′)

|α′||α′ + ξ′| = a′T
α′ + ξ′

|α′ + ξ′| =
α′1 + ξ′1
|α′ + ξ′| ,

having set a′ := α′/|α′| = [1, 0, . . . , 0]T . Now

|α′ + ξ′| =
√

(α′1 + ξ′1)2 + ξ2
2 + · · ·+ ξ2

L =
√

(α′1 + ξ′1)2 + |ξ′−1|2 ,

where ξ′−1 := [ξ′2, . . . , ξ
′
L]T is the vector ξ′ without the first element. It turns out that

ξ′k are i.i.d. and that this property is inherited by (α′1 + ξ′1) and |ξ′−1|2. If we call

x :=
α′1 + ξ′1
σξ

∼ N (α′1/σξ, 1)

and

y :=
|ξ′−1|
σξ
∼ χL−1 ,

we can write ζ as follows

ζ =
x√

x2 + y2
=

x/y√
1 + (x/y)2

,

so the ratio depends only on v := x/y. It is actually useful consider the ratio

t :=
x

y/
√
ν
, ν := L− 1 ,

because it has a known distribution that is the non-central Student T -distribution
with ν degrees of freedom and non-central parameter δ := α′1/σξ. We call it T ′ν (δ).
Explicitly, it has the following canonical form

pT ′ν (δ)(t) =
2νe−δ

2/2ν1+ν/2

π(t2 + ν)
1+ν
2

Γ

(
1 + ν

2

)
H−1−ν

(
− δ√

2

t√
t2 + ν

)
,

where Hn(x) is the Hermite polynomial1.
We obtain the pdf of ζ directly:

ζ =
t√

ν + t2
=⇒ pζ(z) = pT ′ν (δ)

(√
ν

z√
1− z2

) √
ν√

(1− z2)3
, |z| ≤ 1 .

Note 2.1. We have implicitly assumed w.l.o.g. that α′1 > 0. In any case

α′21 = |α|2 =

L∑

`=1

α2
` ,

and α′21 /σ2
ξ may be viewed, at the same extent of Eb/N0, as a ratio between powers

(of filter impulse response and perturbation, respectively). ♦

1Among the definitions of Hermite polynomial, we assume the one that see it satisfying the
following ode: y′′ − 2xy′ + 2ny = 0.
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-bep with channel and perturbation. Once we have the pdf of ζ, we
can find a closed formula for the bep. The decision is based on the sign of

√
Es|α|ζ + n .

Having set u :=
√Es|α|ζ, the bep (given the channel, that is, given |α|, and given the

perturbation, that is, given ξ) is

Pe|α, ζ = Q

(
u

σn

)
= Q

(√Es|α|√
σ2
n

ζ

)
= Q



√

2
Es|α|2
N0

ζ


 = Q

(√
(1− ρ)γbζ

)
,

that comprises the pam and ppm cases (ρ = −1 and ρ = 0, respectively). We call
a := |α| and fa(·) its pdf. The whole bit error probability is

Pe =

∫ ∞

0

∫ 1

−1
Q



√

2
Esa2

N0
z


 fa(a)pζ(z) dzda

Note 2.2. The integration order can not be changed because ζ depends actually on
|α|. ♦

This formula shows that there is a loss in performance with respect to a system
based on a RAKE receiver without TR in trasmission, or –that is the same– an
unperturbed TR system, that would have

Pe|a = Q
(√

(1− ρ)γb

)
.

The effect of ζ in decreasing the argument of Q is definitely to rise (statistically) the
bep.
-tr floor. The most visible effect introduced by perturbed TRs is however the

presence of a bep floor. This is unavoidable if we last a coherent detector. Let us
proceed in an approximate fashion. The detector is mistaken if

√
Es
αT (α+ ξ)

|α+ ξ| + n < 0 ,

given that it was sent the bit 1. There is a probability that |n| is big enough to be
responsible for the wrong decision, but however for Es|α|2 � |n| we can imagine that
the noise term is negligible. Thus the error occurs iff

√
Es
αT (α+ ξ)

|α+ ξ| < 0 ⇐⇒ αT (α+ ξ) < 0

and we can apply as previous the matrix P to get a simpler form of this product,
leading to

α′21 + α′1ξ
′
1 < 0 .

The error probabily is thus

P floor
e ' Q

(√
|α|2
σ2
ξ

)
= Q

( |α|
σξ

)
.
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Figure 2.1: BER with AWGN channel (dashed,
from theory) and multipath channel
(solid, from theory, and circles, from
simulations).

- energy loss. In Chapter 1 we show that TR is the optimum pre-coder in a
system with a 1-finger RAKE, thus with respect to the criterion of maximization of
peak of the received signal. This is no longer true in presence of a perturbation, hence
we may guess that peak-energy is reduced. To prove this, let us find the pdf of ζ2. In
fact

Epeak = Es|α|2ζ2

and ζ2 may be viewed as the loss factor. We recall that

ζ =
α′1 + ξ′1
|α′ + ξ′| .

We can expand the expression as follows:

ζ2 = 1− |ξ′−1|2
(α′1 + ξ′1)2 + |ξ′1|2

= 1− 1

1 +
(α′1 + ξ′−1)2

|ξ′−1|2
.

As previous, it is useful to rewrite this as follows

ζ2 = 1− 1

1 + 1
ν

(
α′1
σξ

+
ξ′1
σξ

)2

1
ν

∣∣∣ ξ
′
−1

σξ

∣∣∣
2

.
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(a) Comparison between perturbed TR (circle) and RAKE (cross).
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(b) Comparison between theory (solid) and simulations (circle).

Figure 2.2: BER of TR and RAKE, comparisons.

In fact, we can now trace back the pdf to a known distribution. We have

α′1
σξ

+
ξ′1
σξ
∼ N (α′1/σξ, 1) =⇒

(
α′1
σξ

+
ξ′1
σξ

)2

∼ χ′1(α′21 /σ
2
ξ )

and
∣∣∣∣
ξ′−1

σξ

∣∣∣∣
2

∼ χ2
ν .
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It is known as (non-central) F (ratio) distribution the pdf that describes the quotient
(or ratio) of two independent chi-square distribution. To be precise, if

X ∼ χ′n(λ) , Y ∼ χ′m(η) ,

then

Z =
X/n

Y/m

has a doubly non-central F ratio distribution of orders (n,m) and non-centrality
parameters (λ, η),

Z ∼ F ′n,m(λ, η).

In our case

Ψ :=

(
α′1
σξ

+
ξ′1
σξ

)2

1
ν

∣∣∣ ξ
′
−1

σξ

∣∣∣
2 ∼ F ′1,ν(α′21 /σ

2
ξ ).

Thus the pdf of

ζ2 = 1− 1

1 + 1
νΨ

is the following:

pζ2(x) = e−λ/2
(1− x)

ν
2
−1

√
xB
(

1
2 ,

ν
2

) .1F1

(
ν + 1

2
;
1

2
;
λ

2
x

)
, x ∈ [0, 1] , λ =

α2
1

σ2
ξ

.

We call % := |ζ| =
√
ζ2 and show in Figure 2.3 on the following page histograms

from simulations and the theoretical pdf. As it is visible, there is a loss in collectable
energy at the receiver: as λ→∞, i.e. σξ → 0, the pdf tends to δ(x− 1) and the loss
vanishes, whereas the greater is σ2

ξ , the greater is the mean loss.

2.2.2 Robustness of RAKE. We model a perturbation on RAKE fingers as follows

α̂k := αk + ξk , ξk ∼ N (0, σ2
ξ ) , k = 1, . . . , L .

The kth correlator in the receiver takes the projection of the received signal with the
kth path of the channel

〈
L∑

`=1

α`s(t− τ`) + n(t), α̂ks(t− τk)
〉

= 〈αks(t− τk) + n(t), α̂ks(t− τk)〉 =

that yields

= α2
kEs + αkξkEs + nkαk

√
Es + nkξk

√
Es .

An all -RAKE, that is, a Maximum-Ratio Combiner, integrates all pulses and gives

CM1 =

L∑

k=1

(α2
kEs + αkξkEs + nkαk

√
Es + nkξk

√
Es)

as the decision variable.
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Figure 2.3: Energy carried by expected equivalent
channel peak with respect to its maximum.
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Note 2.3. For an evanescent perturbation, ξk → 0, the last expression reduces to the
usual problem of a signal in noise:

L∑

k=1

(α2
kEs + nkαk

√
Es) = Es|α|2 + αT

√
Esn . ♦

Note 2.4. The three terms in αkξkEs + nkαk
√Es + nkξk

√Es are not independent.
♦ We may drastically reduce the complexity of this problem neglecting the cross
noise-perturbation term nkξk. The decision is based on the sign of

√
Es|α|2 +

√
EsαT ξ + αTn+ ξTn '

√
Es|α|2 +

√
EsαT ξ + αTn .

The last two terms are independent, thus
√
EsαT ξ + αTn ∼ N (0, Es|α|2σ2

ξ + |α|2σ2
n) .

The bep is then

Q

(√
Es|α|2
Esσ2

ξ + σ2
n

)
,

that, for high Eb/N0, reduces to

Q

( |α|
σξ

)
.

This result shows that the bep floor is not peculiar of TR. Furthermore, its value,
given a perturbation with equal variance, is the same of TR.

Note 2.5. We may show that neglecting the cross-noise term is actually conservative,
that is, the true bep is lower than the one predicted. However, the floor is the same.
♦

2.2.3 Non-coherent detection. An insight into the reason for the existence of bep
floor with TR has been already sketched (see § 2.2 on page 25). There are several
ways to improve performance in terms of bep: (1) adopt a coding technique (e.g. a
repetition code) allow to reduce the bep, at the expense of bit-rate, by a power equals
to repetition order and open the opportunity of using an ML detector that partially
exploits the MUI structure, leading to a further gain; (2) employing a non-coherent
detector allow to break the perturbation floor at the expense of greater bep for small
Eb/N0. While in the first case the bep floors due to MUI and perturbation are both
reduced, in the latter the perturbation floor does not exist anymore, but the MUI
floor still remains.

§2.3 Presence of interference.

2.3.1 Frequency-selective channel as flat multi-channel and MUI. It is well
known that a slowly-fading frequency-selective channel can be viewed as a flat multi-
channel. This perspective basically relies on a natural decomposition of the channel
impulse response (= the mask within the correlator) into its constitutive pulses (aptly
delayed and scaled). This point of view greatly simplifies the intuitive understanding
of following statements and remarks.
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(a) PPM with perturbations, with (light blue) and
without (cyan) MUI.
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(b) Comparison between non-coherent (red) and
coherent (pink) PPM .

Figure 2.4: Non-coherent detector (circle: no perturbation, cross: λ/2 = 20 [dB], left-
triangle: λ/2 = 13 [dB], right-triangle: λ/2 = 10 [dB], diamond: λ/2 = 7
[dB]).

We denote the channel by

h(t) :=
L∑

`=1

α`δ(t− τ`) .

The received signal in the signaling period [0, TF) is

r(t) = y(t) + n(t) +

Q∑

q=1

yq(t) ,

where y(t) is the useful signal, n(t) is the WGN process and the last term is the MUI.
In general we have, for the reference user

y(t) =
√
Es

L∑

`=1

α`s(t− τ`)

and for the qth interfering user

yq(t) =
√
Eqs

Lq∑

`q=1

αq`s
q(t− τ q` − θq) , θq ∼ U [0, TF) .

The correlator computes

〈r(t), y(t)〉

for pam, whereas for ppm have to consider also 〈r(t), y(t− δ)〉, being δ the ppm-shift.
For the sake of simplicity, we proceed with pam, but with few changes we can obtain
an analog ppm version.
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(a) TR with (blue) and without (green) MUI.
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(b) TR and RAKE comparison.

Figure 2.5: BER of TR and RAKE, comparisons (cross: λ/2 = 20 [dB], left-triangle:
λ/2 = 13 [dB], right-triangle: λ/2 = 10 [dB]).
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(circle: no perturbation, cross: λ/2 = 20
[dB], left-triangle: λ/2 = 13 [dB], right-
triangle: λ/2 = 10 [dB], diamond: λ/2 =
7 [dB]).

The correlated signal can be written in analogy to r(t) as the sum of three terms:

CM = ψ + ν + ζ .

Moreover, each term can be viewed as the sum of L terms. For example

ψ :=

〈
y(t),

L∑

`=1

α`s(t− τ`)
〉

=
L∑

`=1

〈
y(t),

√
Esα`s(t− τ`)

〉
=

L∑

`=1

ψ` .

We have to think of s(t) as the basic pulse of IR modulations, e.g. a Scholtz-like pulse;
hence, the `th correlator acts in a finite interval of τ` such as [τ`, τ` + TM), being TM
the duration of the pulse:

ψ` :=
〈
y(t),

√
Esα`s(t− τ`)

〉
=
〈√
Esα`s(t− τ`),

√
Esα`s(t− τ`)

〉
= Esα2

` .

The noise term is trivial, so we leave it out, whilst the MUI term is very attractive.
The generic user q is viewed by the `th correlator as

ζq` :=
〈
yq(t),

√
Esα`s(t− τ`)

〉
=
√
Esα` 〈yq(t), s(t− τ`)〉

and considering equiprobable signs of channel amplitudes and asynchronous interfer-
ence, we have

ζq` =
√
Esα`

Lq∑

`q=1

αq`
〈
sq(t− τ q` − θq), s(t− τ`)

〉 ·
=
√
Esα`

Lq∑

`q=1

αq`Rss(τ` − τ
q
` − θq)
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bation, cross: λ/2 = 20 [dB], left-triangle:
λ/2 = 13 [dB], right-triangle: λ/2 = 10
[dB], diamond: λ/2 = 7 [dB]).

where the last equality is statistical (the second and third terms have the same pdf).
Therefore, the whole receiver see the qth interference as

ζq :=
L∑

`=1

ζq` .

Finally, in presence of Q interferers, we have

ζ =

Q∑

q=1

ζq .

-reference user with tr. Introduction of TR results in replacing y with a
scaled version of Ryy. To be precise, let us write y(t) :=

√Esη(t). All expressions seen
so far continue to be valid with

η(t) 7→ 1

|α|Rηη(t) .

This expression shows that the received signal with TR is wider and with a peak. In
Chapter 1 it is shown that this signal carries more energy than the previous one, the
amount of which depending on channel parameters. An elementary upper-bound tells
us that, for the peculiar form of UWB channels, we can not extract more than twice
the energy. More than half of this energy is carried by the peak, that we call here
main pulse. The rest of the energy is carried by other pulses, that we call side pulses.
From this simplified description it is clear that we have reduced the average power of
the received signal, mainly because of the presence of side pulses, that have at most
half the power of the received signal without TR.
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(d) With TR, correlated channels (different scale).

Figure 2.8: Energy of interfering signal during a signaling time (= time frame).

-interfering user with tr. If TR is introduced by interfering users, we have
two very different scenarios to face with. To fix ideas, let us consider that interfering
user q is actually communicating with another user q′. Let be h1 the channel between
q and reference receiver, and h2 between q and q′.

The received interference at reference receiver will be very different depending on
the correlation between h1 and h2.

If they are independent, the received signal is the cross-correlation between two
independent signals: it does not show any peak and, for the peculiar form of UWB
channels, it turns out to have almost the same energy of the signal sent without TR
(see (a) and (b) in Figure 2.8).

This is no longer true if they are not independent: the worst case occurs when
they coincide and the interference is proportional to the autocorrelation of h1. This is
the worst case because (1) it shows a peak of interference that would require a specific
design of the reference receiver, and (2) it has (= it interferes with) the maximum
energy (see Figure 2.8). We call these two cases of interference respectively weak
and strong.
Note 2.6. We emphasize that, in the first case, the average power of one interfering
signal is decreased but its energy has remained the same: this implies that also the
average interfering power in a frame has not changed.

-pros and cons. Let us summarize the effects of the introduction of TR on the
reference user and on other users.
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PROS of TR

• TR offers the possibility, in presence of noise but without interference, of using
a RAKE with only 1 finger to achieve the same ber of a system using an
all -RAKE without TR;

• TR offers the possibility of outperforming an all -RAKE system, because it
increases the energy that is potentially detectable at the receiver;

CONS of TR

• TR does not offer the same performance of an all -RAKE in presence of interfer-
ence, resulting in higher ber, due to the MUI internal structure;

• TR, if perturbed, produces a ber floor: this is avoidable with non-coherent
receivers, but this option is viable in practice only if the MUI is absent, unless
using a coding technique;

-consequences. Let us draw a few consequences and show simulation results.
Let us start with a scenario without interference: put the TR pre-filter, remaining

with a 1-finger RAKE at the receiver, does not change the ber with respect to a
system with an all -RAKE without TR, even with perturbations (see Figure (a) 2.2
on page 26). As expected, to improve the ber we may use both TR and RAKE,
but this is no longer true with interference: as a matter of fact, the ber floor with
interference is higher if we use a large number of fingers in RAKE (see Figure 2.9).

This phenomenon is deeply mitigated in presence of interference. As a matter of
fact, RAKE outperforms TR and so adoption of TR yields to a loss (see Figure 2.5
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right-triangle: λ/2 = 10 [dB]).

on page 31). In this case, we could exploit the full potential of TR increasing the
number of fingers in RAKE receiver: it turns out that TR/RAKE actually outperforms
an all -RAKE without TR (see Figure 2.6 on page 32), so there exists a minimum
number of fingers such that the loss is zero.

If an interfering user uses TR, there are two cases to take into account depending
on the focusing of interfering signal: (1) if it is not focused (weak interference), then
TR performs as well as RAKE, hence there is no longer any loss (see Figure 2.7 on
page 33), while (2) if it is focused (strong interference), then the loss remains and it
is necessary to consider more fingers in RAKE receiver (see Figure 2.11 on the next
page).

If TR of the interfering signal is perturbed, then the maximum interfering energy
decreases (see Figure 2.3 on page 28), resulting in better ber (see Figure 2.12 on
the next page).
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CONCLUSION

In this thesis we have addressed the problem of finding limitations and strenghts
of Time Reversal. The main results are three.

The first result regards the minimization of the average complexity, linked to the
total number of taps and fingers, of IR-UWB systems by means of TR. To compare
complexities, we start with a system that uses a c-RAKE (without TR) when the
channel has L paths. If c� L, then all the systems with k taps and m fingers with
k +m = c have the same performance and thus are equivalent; otherwise, the system
with the minimum complexity tends to have

√
c taps and

√
c fingers. This represents

the big complexity gap that can be achieved with TR, passing from c+ 1 to 2
√
c taps

and fingers.

The second result concerns the maximum energy gain brought by TR in IR-UWB
systems. By means of point process theory, we compute the energy limit that an
IR-UWB system can collect. As a consequence, we know the best achievable BEP
and, from a different point of view, the maximum allowable energy saving to preserve
the performance.

The third one is actually a set of results on the robustness of TR in scenarios with
and without MUI and on the effect of a perturbed TR on the MUI. A perturbation,
as well as MUI, has the effect of introducing a BER floor, but TR can be exploited to
reduce only the latter. Furthermore, the use of TR can lead to negative effects on other
users. This happens when a strong cross-correlation between two channels (interfering
transmitter and reference receiver or interfering receiver) occurs. However, with low
SIR, TR offers usual advantages. Moreover, if MUI uses TR and it is perturbed,
then the BEP of the reference user is better because of the deviation (due to the
perturbation) from a condition of maximum interference.



CODE

In the following are presented few matlab codes useful to perform some of the
simulation seen in past chapters.

Basic algorithms

Algorithm: energy estimation
1 %% loading channel database
2 load(’ch_db.mat’);
3 channel_database=h;
4 clear h;
5 nChannels = size(channel_database ,1);
6 Ec = sum(channel_database .^2 ,2);
7 EcAve = mean(Ec);
8
9 % Each time is a multiple of 100 [ps]

10 fs = 10e9;
11
12 Tc = 10; % = 1 [ns]
13 Nh = 50;
14 Tf = Nh*Tc;
15 %Np = Nb*Ns;
16 Tm = 1;
17
18 nTaps = 50;
19 nFingers = 50;
20
21 tap =(1:10: nTaps);
22 finger =(1:10: nFingers );
23
24 EbAvgN0_dB_vec = 0:2:16;
25 Eb = 1;
26 EbAve = Eb*EcAve;
27 gamma_bAve = 10.^( EbAvgN0_dB_vec /10);
28 N0 = EbAve ./ gamma_bAve;
29
30 rel_err_des = 0.001;
31
32 err_count = zeros(length(EbAvgN0_dB_vec),length(tap),length(finger ));
33 BERcount = zeros(length(EbAvgN0_dB_vec),length(tap),length(finger ));
34 BER = zeros(length(EbAvgN0_dB_vec),length(tap),length(finger ));
35
36 nTestFEC = 1e1; %For Each Channel
37
38 nAttempts = 1e5;
39 countpts =1;
40
41 %%
42 tic
43 for ebno =1: length(EbAvgN0_dB_vec),
44 fprintf(’\nEbN0:␣%d␣of␣%d␣’,[ebno ,length(EbAvgN0_dB_vec )]);
45 countpts =1;
46 for na=1: nAttempts ,
47 if na/nAttempts >countpts *0.1,
48 fprintf(’.’);
49 countpts = countpts +1;
50 end
51
52 s = zeros(1,Tf);
53 b = round(rand);
54 a = -1+2*b;
55 c = floor(Nh*rand);
56 s(c*Tc+1)=a;
57 s = s/norm(s);
58
59 h = channel_database (1+mod(na,nChannels ),:);
60 L = sum(h~=0);
61
62 %
63 for k=1: length(tap),%K=1:L,
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64 K=tap(k);
65
66 if K<=L,
67 pre_filter = fliplr(pathsel(h,K));
68 x = sparseconv2(s,pre_filter );
69 x = x/norm(x); % normalisation
70
71 y = sparseconv2(x,h);
72 ycirc = makecirc(y,Tf);
73
74 %
75 for n=1: length(finger),%N=1:1+L*(K-1),
76 N=finger(n);
77
78 if N<=1+K*(L-1),
79 if 1/sqrt(BERcount(ebno ,k,n)) > rel_err_des ,
80 rake = a*pathsel(ycirc ,N);
81
82 for nFEC =1: nTestFEC ,
83 noise = sqrt(N0(ebno )/2)* randn(1,Tf);
84
85 r = ycirc+noise;
86 a_est = sign(rake*r.’);
87 if a_est~=a,
88 err_count(ebno ,k,n) = err_count(ebno ,k,n) + 1;
89 end
90 BERcount(ebno ,k,n) = BERcount(ebno ,k,n)+1;
91 end
92 end
93 end
94 end%of rakes for a given prefilter
95 else
96 break;
97 end
98 end%of prefilters for a given channel
99

100 end%of error counting
101 if BERcount(ebno ,k,n)==0,
102 break;
103 end
104 end
105
106 for ebno =1: length(EbAvgN0_dB_vec),
107 for k=1: length(tap),%K=1:nbig ,
108 for n=1: length(finger),%N=1:nbig ,
109 if BERcount(ebno ,k,n)~=0,
110 BER(ebno ,k,n) = err_count(ebno ,k,n) / BERcount(ebno ,k,n);
111 end
112 end
113 end
114 end
115 toc

Algorithm: BER estimation
1 %% Loading channel
2 % load(’chdb.mat ’);
3 % channel_database=h;
4 % clear h;
5 % nChannels = size(channel_database ,1);
6 % Eh = sum(channel_database .^2 ,2);
7 % EhAvg = mean(Eh);
8
9 % % % --- Trivial channel

10 % channel_database_old=channel_database;
11 % channel_database = zeros(size(channel_database_old ));
12 % channel_database (:,1)= ones(size(channel_database ,1) ,1);
13 % Eh = sum(channel_database .^2 ,2);
14 % EhAvg = mean(Eh);
15 % % % --- end of Trivial channel
16
17 %% Init algorithm
18
19 % Signal parameter
20 fs = 10e9; % Each time is a multiple of 100 [ps]
21 dt = 100e-12; % Simulator resolution = 100 [ps]
22 ndt = 1/(fs*dt);
23
24 % Each time is expressed in samples.
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25 Tc = 20; % = 2 [ns]
26 Nh = 50;
27 Tf = Nh*Tc;
28 %Np = Nb*Ns;
29 Tm = 20;
30 Ns=1;
31
32 % System Parameters
33 EbAvgN0_dB_vec = [0:2:14 18:4:30 35 40];
34 N0 = EhAvg;
35
36 varPert_vec = linspace (0 ,0.5*N0/2,2);
37 PNR =10.^([ - Inf -20 -13 -10 -7]/10);
38 varPert_vec = PNR * N0/2;
39
40 Q = 20; % numero di interferenti
41 JNR_vec = -Inf;
42
43 % Parametri simulazione
44 BER = zeros(length(EbAvgN0_dB_vec),length(JNR_vec),length(varPert_vec ));
45 BER_ML = zeros(length(EbAvgN0_dB_vec),length(JNR_vec),length(varPert_vec ));
46
47 BERcount = zeros(length(EbAvgN0_dB_vec),length(JNR_vec),length(varPert_vec ));
48 BERcount_ML = zeros(length(EbAvgN0_dB_vec),length(JNR_vec),length(varPert_vec ));
49
50
51 th_count_max = 3e5;
52 Es = 1;
53
54 eps_std = 0.05; % accuracy desired (std)
55
56 b_jammerTR = 0; % Is jammer with or without TR?
57 b_jammerpTR = 0; % Is jammer ’s pre -filter perturbed?
58 PNR_jammer = 0;
59 varPert_jammer = PNR_jammer * N0/2;
60 b_realcase = 1; % not focused
61 b_worstcase = abs(1- b_realcase ); % focused
62 b_ML = 0;
63 b_noise =1;
64
65 b_pTR = 0; % Is perturbed the FULL -TR?
66 b_pRAKE = 0; % Is perturbed the ALL -RAKE?
67 b_full_all =0; % Max performance?
68
69 b_ppm = 0;
70 b_ppm_nc = 0;
71
72 b_long = 1;
73
74 tau=7e-10;
75 wf = zeros(1,Tm/dt * 1/fs);
76 t = [fliplr (-(0:dt:Tm/(2*fs))) (dt:dt:Tm/(2*fs))];
77
78 if tau==0, % rect -pulse
79 sig = ones(1,length(wf));
80 sig( end ) = 0;
81 sig (1)=0;
82 else % Scholtz -pulse: 2nd order gaussian derivative
83 sig = (1 -4.*pi.*((t./tau ).^2)).*...
84 exp(-2.*pi.*((t./tau ).^2));
85 end
86
87 sig = sig/norm(sig);
88
89 %% Start
90
91 for varPertToTest =1: length(varPert_vec),
92 sigma_d = sqrt(varPert_vec(varPertToTest ));
93 fprintf(’\nPerturbation␣no.␣%d␣of␣%d,\n’,[varPertToTest length(varPert_vec )]);
94
95 for jnrToTest =1: length(JNR_vec),
96 fprintf(’␣␣Jammer␣no.␣%d␣of␣%d,\n’,[jnrToTest length(JNR_vec )]);
97
98 JNR = JNR_vec(jnrToTest );
99 jnr = 10^( JNR /10); % without TR

100
101 % Scenario
102 if jnr==0,
103 b_jamming =0;
104 else
105 b_jamming =1;
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106 end
107
108 if b_jamming ==1 && b_ML ==1 && Ns >1,
109 thML =1; % ML decision with non -gaussian interference
110 else
111 thML =0; % ML on WGN
112 end
113
114 for ebToTest =1: length(EbAvgN0_dB_vec),
115 for demodML =0:thML ,
116 fprintf(’␣␣EbN0␣no.␣%d␣of␣%d:’,[ebToTest length(EbAvgN0_dB_vec )]);
117
118 EbAvgN0_dB = EbAvgN0_dB_vec(ebToTest ); % [dB]
119
120 gamma_bAvg = 10^( EbAvgN0_dB /10); % desired
121 Ex = gamma_bAvg;
122 countpts =0;
123 count = 0; %iteration counter
124 err_count =0; %error counter
125 if thML ==1 && demodML ==0,
126 Z = [];
127 end
128 %
129 tic
130
131 p_current =0.5e-10;
132 th=1/( p_current*eps_std ^2);
133
134 while (count <th) && count <th_count_max ,
135 if count/th>countpts *0.05,
136 fprintf(’.’);
137 countpts = countpts +1;
138 end
139
140 softDt=zeros(1,Ns);
141
142 %% Useful signal
143 s = zeros(1,Tf);
144 b = round(rand);
145 a = -1+2*b;
146 c = floor(Nh*rand);
147 if b_ppm==0,
148 s(c*Tc+1)=a;
149 else
150 s(c*Tc+1+ (1-b))=1;
151 end
152 s = s/norm(s);
153 if b_long ,
154 s = sparseconv2(s,sig);
155 s = makecirc(s,Tf);
156 end
157
158 % channel
159 h = channel_database(floor (1+( nChannels -1)* rand ),:);
160 L = sum(h~=0);
161
162 if b_pTR ,
163 K=0;
164 else
165 K=1;
166 end
167 if b_full_all ,
168 K=0;
169 end
170 pre_filter = fliplr(pathsel(h,K));
171 if b_pTR ,
172 pre_filter_nop = pre_filter;
173 pre_filter(pre_filter ~=0) = pre_filter(pre_filter ~=0)+ ...
174 sigma_d*randn(size(pre_filter(pre_filter ~=0)));
175 end
176
177 if b_pRAKE ,
178 N=0;
179 else
180 N=1;
181 end
182 if b_full_all ,
183 N=0;
184 end
185
186 if b_pTR ,
187 x_nop = sparseconv2(s,pre_filter_nop );
188 x_nop = x_nop/norm(x_nop) * sqrt(Ex); % normalisation
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189 y_nop = sparseconv2(x_nop ,h);
190 ycirc_nop = makecirc(y_nop ,Tf);
191
192 rake = a*pathsel(ycirc_nop ,N);
193 else
194 rake = a*pathsel(ycirc ,N);
195 end
196
197 if b_ppm==1,
198 rake=a*rake;
199 if b==0,
200 rake=circshift(rake.’,-1).’;
201 end
202 end
203
204 if b_pRAKE ,
205 rake = rake/sqrt(Ex);
206 rake(rake ~=0) = rake(rake ~=0)+ sigma_d*randn(size(rake(rake ~=0)));
207 end
208
209 %% Detection
210 E_ML = norm(rake )^2;
211 z=0;
212 for ns=1:Ns,
213 %% MUI
214
215 if b_jamming ==1,
216 if mod(count ,100)==0 ,
217 jammer = zeros(1,Tf);
218 for q=1:Q,
219 s_jammer = zeros(1,Tf);
220 b_jammer = round(rand);
221 a_jammer = -1+2* b_jammer;
222 c_jammer = floor(Nh*rand);
223 s_jammer(c_jammer*Tc+1)= a_jammer;
224 s = s/norm(s); %
225 if b_long ,
226 s = sparseconv2(s,sig);
227 s = makecirc(s,Tf);
228 end
229
230 % channel
231 h_jammer = channel_database(floor (1+( nChannels -1)* rand ),:);
232
233 if b_jammerTR ,
234 K_jammer =0;
235 else
236 K_jammer =1;
237 end
238 pre_filter_jammer = fliplr(pathsel(h_jammer ,K_jammer ));
239 if b_jammerpTR ,
240 pre_filter_jammer(pre_filter_jammer ~=0) = ...
241 pre_filter_jammer(pre_filter_jammer ~=0) + ...
242 sqrt(varPert_jammer )* randn(size(pre_filter_jammer(pre_filter_jammer ~=0)));
243 end
244 x_jammer = sparseconv2(s_jammer ,pre_filter_jammer );
245 x_jammer=x_jammer/norm(x_jammer )*sqrt (1/2* jnr*Tf/Q*Ex);
246 if b_worstcase ,
247 y_jammer = sparseconv2(x_jammer ,h_jammer );
248 end
249 if b_realcase ,
250 h_anotherjammer = channel_database(floor (1+( nChannels -1)* rand ),:);
251 y_jammer = sparseconv2(x_jammer ,h_anotherjammer );
252 end
253 ycirc_jammer = makecirc(y_jammer ,Tf);
254
255 jammer=jammer+ycirc_jammer;
256
257 end % of new jamming signal generation
258 else
259 jammer = circshift(jammer.’,floor(rand*length(jammer ))-1).’;
260 end
261 else
262 jammer = zeros(1,Tf);
263 end
264
265 if thML ==1 && demodML ==0,
266 z = z+rake*jammer.’;
267 end
268 %% Pulse correlation
269 noise = sqrt(N0/2)* randn(1,Tf);
270 if b_noise ==0, noise=zeros(size(noise )); end
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271 if b_long ==1, noise=noise/sqrt (2); end
272 r = ycirc+noise+jammer;
273
274 if b_ppm==0,
275 softDt(ns)=rake*r.’;
276 else
277 if b_ppm_nc ==0, % so it is coherent
278 softDt(ns)=rake*(b*ycirc+noise+jammer).’ - ...
279 (circshift(rake .’,1).’)*((1-b)*ycirc+noise+jammer ).’;
280 else %it is non -coherent
281 rake_pos = zeros(size(rake ));
282 rake_pos(rake ~=0)=1;
283 softDt(ns) = norm(rake_pos .*(b*ycirc+noise+jammer ))^2 - ...
284 norm( (circshift(rake_pos .’,1).’) .*((1-b)*ycirc+noise+jammer ))^2;
285 end
286 end
287
288 end %of Ns
289 % %%%%%
290 if thML ==1 && demodML ==0,
291 Z = [Z z];
292 end
293
294 if demodML ==0,
295 decision_variable = sum(softDt );
296 end
297
298 if demodML ==1,
299 r_ML =0;
300 for ns=1:Ns,
301 r_ML = r_ML + abs(softDt(ns)+E_ML)^ ML_pow - abs(softDt(ns)-E_ML)^ ML_pow;
302 end
303 decision_variable = r_ML;
304 end
305
306 a_est = sign( decision_variable );
307
308 if a_est~=a,
309 err_count = err_count + 1;
310 end
311 count = count +1; %iteration counter
312
313 p_current = count /( count +1) * p_current + (err_count/count )/( count +1);
314
315 th=floor (1/( p_current*eps_std ^2));
316 end%of error counting
317
318 if thML ==1 && demodML ==0,
319 excess_kurt = kurtosis(Z)-3;
320 ML_pow=fzero(inline (...
321 [’(gamma (5/x)*gamma (1/x)/(( gamma (3/x))^2))-3-’ ,...
322 num2str(excess_kurt )]) ,1);
323 end
324
325 if demodML ==0,
326 BER(ebToTest ,jnrToTest ,varPertToTest) = err_count/count;
327 BERcount(ebToTest ,jnrToTest ,varPertToTest) = count;
328 end
329
330 if demodML ==1,
331 BER_ML(ebToTest ,jnrToTest ,varPertToTest) = err_count/count;
332 BERcount_ML(ebToTest ,jnrToTest ,varPertToTest) = count;
333 end
334
335
336 if count <th, fprintf(’␣Accuracy␣not␣reached.␣’); end
337 toc
338 if err_count ==0, fprintf(’␣␣␣␣␣␣␣␣␣Critical␣BER␣evaluation.␣Break.\n’);
339 break;
340 end
341 end
342 if err_count ==0, break; end
343 end
344 end
345 end

Classes
More complex and complete simulations have been performed by means of an OO

approach. In order to do this, various classes have been written, some of which are
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outlined in the following. AX stands for ACTS, our lab.

AXAwgn
1 classdef AXAwgn < handle
2 %AXAWGN AWGN class.
3 % Specify Eb/N0 [dB] white gaussian noise.
4
5 properties
6
7 % External
8 fs = []; % sampling frequency [Hz]
9 L = []; % length of noise vector [sample]

10 Pn = []; % noise power [V^2]
11 % Not -mandatory
12 Tb = []; % bit period [s]
13 SNRdB = []; % snr [dB]
14
15 % Internal
16 noise = []; % wgn object
17 EbN0 = []; % EbN0 parameter corresponding to SNRdB
18
19 end %properties
20
21 methods
22
23 % constructor
24 function this = AXAwgn(fs, L)
25 this.fs = fs;
26 this.L = L;
27 end
28
29 % init
30 function init(obj)
31 if ~isempty(obj.SNRdB) && ~isempty(obj.Tb),
32 obj.EbN0 = 0.5 * 10^( obj.SNRdB /10) * (obj.Tb*obj.fs);
33 end
34
35 end
36
37 % routines
38 function gn(obj , fs , L, Pn)
39 obj.noise = AXSignal( randn(1,L), fs );
40 obj.noise.setPower(Pn);
41 end
42
43 end %methods
44
45 end

AXChannel
1 classdef AXChannel < handle
2 %AXChannel Channel class.
3 % Generate several channels.
4
5 properties
6
7 % External
8 fs = []; % bit obj from the source
9 mod = []; % modulation type (0=802.15.3a, 1=802.15.4a)

10 L = []; % number of samples of the channel representation
11 s; % signal from TX
12 Ni; % num of finger of the equalizer
13 No; % num of taps of the rake receiver
14
15 % Internal
16 pref; % pre -filter
17 h; % channel object
18 x; % signal from TX passed through pre -filter
19 y; % signal passed through the noise -free channel
20
21 % Others
22 hTR; % TR equivalent channel: hTR = conv(pref ,h)
23 rake; % rake taps
24
25 end %properties
26
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27 methods
28
29 % constructor
30 function obj = AXChannel(mod , fs, L, Ni)
31 obj.mod = mod;
32 obj.fs = fs;
33 obj.L = L;
34 obj.Ni = Ni;
35 end
36
37 % exec
38 function exec(obj)
39 obj.genChannel;
40 obj.genPrefilter;
41 obj.y = AXSignal(sparseconv(obj.x.signal ,obj.h.signal),obj.fs);
42 end
43
44 % genChannel
45 function genChannel(obj)
46 if obj.mod==0,
47 obj.ieee802153a;
48 end
49 end
50
51 % set
52 function setSignal(obj , s)
53 obj.s = s;
54 end
55
56 % genPrefilter
57 function genPrefilter(obj)
58 hi = pathsel(fliplr( obj.h.signal ), obj.Ni);
59 obj.pref = AXSignal( hi, obj.fs );
60
61 % --- ’x’ has the same power of ’s’
62 obj.x = AXSignal (...
63 sparseconv(obj.pref.signal ,obj.s.signal),obj.fs );
64 currPow = obj.x.getPower;
65 P_s = obj.s.getPower;
66 obj.x.setPower( P_s );
67 alpha = P_s / currPow;
68 obj.pref.signal = sqrt(alpha) * obj.pref.signal;
69 % ---
70 end
71
72 % genRake
73 function genRake(obj , No)
74 obj.No = No;
75 obj.hTR = AXSignal( ...
76 sparseconv(obj.pref.signal ,obj.h.signal),obj.fs );
77 ho = pathsel(obj.hTR.signal , No);
78 obj.rake = AXSignal( ho, obj.s.fs );
79 end
80
81 % aux routines
82 function ieee802153a(obj)
83 % at now only star topology available
84 %gamm =1.7; A0=47; d=10; c0=10^(-A0/20);
85 gamm =1.7; A0=47; d=10; c0=10^(-A0/20);
86 ag = (c0/sqrt(d^gamm ));
87
88 [~,HF ,~,~,~] = channelIEEE(obj.fs ,ag^2,obj.L);
89 obj.h = AXSignal(HF, obj.fs);
90 end
91
92 end %methods
93
94 end

AXDemodulator
1 classdef AXDemodulator < handle
2 %AXDemodulator Modulator class.
3 % Demodulate electrical signals into decision variables.
4
5 properties
6
7 % External
8 r = []; % signal obj to demodulate
9 No = []; % no of fingers of the RAKE -receiver
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10 mod = []; % modulation type (0=TH-PPM , 1=TH-PAM , 2=DS -PAM)
11
12 s = [];
13 h = [];
14
15 % Internal
16 Z = []; % decision variable object
17
18 end %properties
19
20 methods
21
22 % constructor
23 function this = AXDemodulator(r, No , mod , s, h)
24 this.r = r;
25 this.No = No;
26 this.mod = mod;
27
28 this.s = s;
29 this.h = h;
30 end
31
32 % routines
33 function buildrake( )
34
35 end
36
37 function demodulate(obj)
38
39 Nb = length(obj.s.b.signal );
40 Na = length(obj.s.a.signal );
41 Ns = Na / Nb;
42
43 nc = floor(obj.s.Tc * obj.s.fs); % chip size [sample]
44 ns = nc * obj.s.Nh; % slot size [sample]
45 neps = floor(obj.s.epsilon*obj.s.fs); % PPM shift size [sample]
46 n = ns .* Na; % ind. fun. size [sample]
47
48 % Resync
49 hShift = find(obj.hTR.signal ~=0,1,’first ’);
50 %rx = obj.sTR.signal ;%+obj.noise.signal ;%+obj.mui.signal;
51 rx = rx(hShift:end);
52 RAKE = obj.hRAKE.signal(hShift:end);
53
54 obj.r = UFSignal( rx , obj.s.fs );
55 z = zeros(1,Nb);
56 zs = zeros(Nb ,Ns);
57 %bEst = zeros(1,Nb);
58
59 % MASK is the basis mask signal
60 mask = zeros(1,nc);
61 wf = obj.s.w.signal; nw = length(wf);
62 if nw >nc,
63 warning(’UFUser:demodulator ’ ,...
64 ’Waveform␣size␣greater␣than␣chip␣size’);
65 end
66 mask (1:nw) = wf;
67
68 if nc -neps >=nw,
69 mask(neps +1: neps+nw) = -wf;
70 else
71 mask(neps +1:nc) = -wf(1:nc -neps);
72 end
73
74 mR = conv( RAKE , mask );
75 L = length(mR);
76 idx = find( obj.s.indTH.signal ~= 0 );
77
78 for n=1:Nb,
79 for k=1:Ns,
80 i = idx((n-1)*Ns+k);
81 zs(n,k) = rx(i:i+L-1)*mR.’;
82 end
83 z(n) = sum(zs(n,:));
84 end
85 end
86
87 end %methods
88
89 end
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AXEncoder
1 classdef AXEncoder < handle
2 %AXEncoder Encoder class.
3 % Encode bits in symbols.
4
5 properties
6
7 Ns = []; % bit rep number
8 b; % prev signal obj
9 Ts = []; % symbol period [s]

10 a = []; % symb obj (= encoded bit obj)
11
12 end %properties
13
14 methods
15 %% Interface
16
17 % Constructor
18 function obj = AXEncoder(Ns)
19 obj.Ns = Ns;
20 end
21
22 % exec
23 function exec(obj)
24 %symbols = rectpulse( -1+2*obj.b.signal , obj.Ns );
25 symbols = reshape(ones(obj.Ns ,1)*( -1+2* obj.b.signal ),1,[]);
26 obj.a = AXSignal( symbols , obj.Ns*obj.b.fs );
27 end
28
29 % get
30 function s = getSignal(obj)
31 s = obj.a;
32 end
33
34 % set
35 function setSignal(obj , s)
36 obj.b = s;
37 end
38
39 %% Aux routines
40
41
42
43
44 end %methods
45
46 end

AXModulator
1 classdef AXModulator < handle
2 %AXModulator Modulator class.
3 % Modulate symbols into electrical signals.
4
5 properties
6
7 % Input
8 Tc=[]; % chip time [s]
9 Ts=[]; % frame or slot time or average PRT [s]

10 Np=[]; % code period
11 mod =[]; % modulation type (0=TH-PPM , 1=TH -PAM , 2=DS-PAM)
12 Tm=[]; % pulse duration
13 PdBm =[]; % power (averaged in 1 slot)
14 Nh=[]; % slot len in chips or max num of users mux in 1 slot
15
16 a; % symb obj [symb]
17
18 epsilon =[]; % PPM shift [s]
19 tau =[]; % pulse shaping factor (if 0, then rect -pulse)
20 fs=[];
21
22 % Processed
23 c=[]; % code obj
24 w=[]; % basis waveform (Scholtz -like or rect -like) obj
25 ind =[]; % indicator function (where to put the waveforms)
26 indTH =[]; % partial indicator function (only time -hopped)
27 amp =[]; % amplitudes @ fs
28 indamp =[]; % comb -like function with modulated Dirac amplitudes
29 signalTH =[];% only -TH modulated signal (w/o PPM)
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30
31 signal = []; % output signal
32
33 end %properties
34
35 methods
36
37 % constructor
38 function obj = AXModulator(mod ,Tc,Ts,Nh ,Np,Tm,PdBm ,fs,epsilon ,tau)
39 obj.mod = mod;
40 obj.Tc = Tc;
41 obj.Ts = Ts;
42 obj.Nh = Nh;
43 obj.Np = Np;
44 obj.Tm = Tm;
45 obj.PdBm = PdBm;
46 obj.fs = fs;
47 obj.epsilon = epsilon;
48 obj.tau = tau;
49 end
50
51 % set
52 function setSignal(obj , s)
53 obj.a = s;
54 end
55
56 % get
57 function s = getSignal(obj)
58 s = obj.signal;
59 end
60
61 % main routines
62 function exec(obj)
63 % Build the signal
64 obj.gen;
65 end
66
67 % aux routines
68 % routines
69 function gencode(obj) % only 1 period
70 if obj.mod == 0, % PPM case
71 cod = round( (obj.Nh -1) * rand(1, obj.Np) );
72 obj.c = AXSignal(cod ,1/obj.Ts);
73 else % PAM case
74 cod = round( rand(1, obj.Np) );
75 obj.c = AXSignal ( -1+2*cod ,1/obj.Ts);
76 end
77 end
78 function genwf(obj)
79 dt=1/obj.fs;
80 t = [fliplr (-(0:dt:obj.Tm/2)) (dt:dt:obj.Tm/2)];
81
82 if obj.tau==0, % rect -pulse
83 L = length(t);
84 s = ones(1,L);
85 s( floor(L/2): end ) = 0;
86 s(1)=0;
87 %s(1)=0; s(end )=0;
88 else % Scholtz -pulse: 2nd order gaussian derivative
89 s = (1 -4.*pi.*((t./obj.tau ).^2)).*...
90 exp(-2.*pi.*((t./obj.tau ).^2));
91 end
92
93 obj.w = AXSignal(s, obj.fs);
94 obj.w.setEnergy (1);
95 end
96
97 function gensignal(obj)
98 %% 1.
99 Na = length(obj.a.signal );

100
101 nc = floor(obj.Tc * obj.fs); % chip size [sample]
102 ns = nc * obj.Nh; % slot size [sample]
103 neps = floor(obj.epsilon*obj.fs); % PPM shift size [sample]
104 n = ns .* Na; % ind. fun. size [sample]
105
106 comb = zeros(1,n); % periodic Dirac function @ Ts
107 combTH = zeros(1,n); % positions of TH signal
108 combTHPPM = zeros(1,n); % positions of TH+PPM signal
109
110 for k = 1 : Na,
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111
112 % uniform pulse position
113 index = 1 + (k-1)*ns;
114 comb(index) = 1;
115
116 % introduction of TH
117 ck = obj.c.signal (1+mod(k-1,obj.Np));
118 combTH(index + ck*nc) = 1;
119
120 % introduction of PPM (after TH)
121 ak = obj.a.signal(k);
122 combTHPPM(index + ck*nc + (1+ak)/2* neps) = 1;
123
124 end
125
126 if obj.mod==0 || obj.mod==1, % TH (PPM or PAM)
127 obj.ind = AXSignal(combTHPPM , 1);
128 obj.indTH = AXSignal(combTH , 1); %optimization tip: make
129 % idx vectors *not* logical but integer
130 else % DS (PAM)
131 obj.ind = AXSignal(comb , 1);
132 end
133
134 %% 2.
135 Eslot = (10^( obj.PdBm /10))/1 e3 * obj.Ts;
136
137 ampl = ones(1, Na);
138
139 if obj.mod==0, % TH-PPM
140 ampl = sqrt(Eslot) * ampl;
141 elseif obj.mod==1, % TH-PAM
142 ampl = sqrt(Eslot) * obj.a.signal;
143 else % DS -PAM
144 q = floor( Na / obj.Np );
145 r = Na - q*obj.Np;
146 for k=1:q,
147 ampl( 1+(k-1)* obj.Np : k*obj.Np ) = obj.c.signal .* ...
148 obj.a.signal( 1+(k-1)* obj.Np : k*obj.Np );
149 end
150 ampl(Na-r+1:Na) = obj.c.signal (1:r) .* ...
151 obj.a.signal (1:r);
152 ampl = sqrt(Eslot) * ampl;
153 end
154
155 %obj.amp = AXSignal( rectpulse(ampl ,ns), obj.fs );
156 obj.amp = AXSignal( reshape(ones(ns ,1)*ampl ,1,[]), obj.fs );
157
158 %% 3.
159 nw = length( obj.w.signal );
160
161 obj.indamp = AXSignal(obj.ind.signal .*obj.amp.signal , obj.fs);
162 %sig = zeros(1, n + nw - 1);
163 sig = sparseconv( obj.indamp.signal , obj.w.signal );
164 obj.signal = AXSignal( sig , obj.fs );
165
166 if obj.mod==0 || obj.mod==1, % TH-case
167 sTH = sparseconv( obj.indTH.signal .*obj.amp.signal ,...
168 obj.w.signal );
169 obj.signalTH = AXSignal( sTH , obj.fs );
170 end
171
172 end
173 function gen(obj)
174 obj.gencode;
175 obj.genwf;
176 obj.gensignal;
177 end
178
179
180 end %methods
181
182 end

AXReceiver
1 classdef AXReceiver < handle
2 %AXTX Receiver class.
3 % RX class.
4
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5 properties
6
7 % External
8
9 % Internal

10 TX; % REF TX
11 CH; % REF CH
12
13 SNR_dB; % signal -to -noise -ratio [dB]
14 EbN0_dB; % Eb/N0 [dB]
15 mui; % MUI signal obj
16 noise; % noise signal obj
17 sigtodem; % signal for demodulation obj
18
19 Z=[]; % decision variables from demodulation
20 bit_est =[]; % estimated bits from detection
21
22 BER_est; % estimated BER
23 % Others
24
25
26 end %properties
27
28 methods
29 %% INTERFACE
30
31 % constructor
32 function obj = AXReceiver(tx,ch)
33 obj.TX = tx;
34 obj.CH = ch;
35 end
36
37 % gen noise
38 function gennoiseEbN0(obj , Pref , EbN0_dB)
39 Tb = obj.TX.source.Tb;
40 fs = obj.TX.modulator.fs;
41 ebn0 = 10^( EbN0_dB /10); % linear
42 snr = 2*ebn0/(Tb*fs); % linear
43 obj.SNR_dB = 10* log10(snr);
44 Pn = Pref / snr;
45 obj.gennoisePn(Pn);
46 end
47
48 function gennoiseSNR(obj , Pref , SNR_dB)
49 Tb = obj.TX.source.Tb;
50 fs = obj.TX.modulator.fs;
51 snr = 10^( SNR_dB /10); % linear
52 EbN0 = 0.5 * snr * (Tb*fs); % linear
53 obj.EbN0_dB = 10* log10(EbN0);
54 Pn = Pref / snr;
55 obj.gennoisePn(Pn);
56 end
57
58 function gennoisePn(obj , Pn)
59 L = length( obj.CH.y.signal );
60 obj.noise = AXSignal( randn(1,L), obj.TX.modulator.fs );
61 obj.noise.setPower(Pn);
62 end
63
64 % set multi user interference
65 function setmui(obj , MUI)
66 obj.mui = AXSignal( MUI , obj.TX.modulator.fs );
67 end
68
69 % define signal for demodulation
70 function defsig(obj , flag)
71 % flag =0: only useful signal (w/o any disturb)
72 % flag =1: only interference
73 % flag =2: useful signal + noise
74 % flag =3: useful signal + interference
75 % flag =4: useful signal + noise + interference
76 switch flag ,
77 case 0
78 obj.sigtodem = obj.CH.y;
79 case 1
80 obj.sigtodem = obj.mui;
81 case 2
82 obj.sigtodem = AXSignal( ...
83 obj.CH.y.signal + obj.noise.signal , ...
84 obj.TX.modulator.fs );
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85 case 3
86 obj.sigtodem = AXSignal( ...
87 obj.CH.y.signal + obj.mui.signal , ...
88 obj.TX.modulator.fs );
89 case 4
90 obj.sigtodem = AXSignal( ...
91 obj.CH.y.signal+obj.noise.signal+obj.mui.signal ,...
92 obj.TX.modulator.fs );
93 end
94 end
95
96 % execute
97 function exec(obj)
98 obj.demodulator;
99 obj.detector;

100 obj.BER_estimation;
101 end
102
103 function demodulator(obj)
104 Nb = obj.TX.source.Nb;
105 Ns = obj.TX.encoder.Ns;
106 Na = Ns * Nb;
107
108 nc = floor(obj.TX.modulator.Tc *...
109 obj.TX.modulator.fs); % chip size [sample]
110 ns = nc * obj.TX.modulator.Nh; % slot size [sample]
111 neps = floor(obj.TX.modulator.epsilon * ...
112 obj.TX.modulator.fs); % PPM shift size [sample]
113
114 % Resync
115 hShift = find(obj.CH.hTR.signal ~=0,1,’first ’);
116 rx = obj.sigtodem.signal(hShift:end);
117 RAKE = obj.CH.rake.signal(hShift:end);
118
119 z = zeros(1,Nb);
120 zs = zeros(Nb ,Ns);
121
122
123 % MASK is the basis mask signal
124 mask = zeros(1,nc);
125 wf = obj.TX.modulator.w.signal;
126 nw = length(wf);
127 if nw >nc,
128 warning(’UFUser:demodulator ’ ,...
129 ’Waveform␣size␣greater␣than␣chip␣size’);
130 end
131 mask (1:nw) = wf;
132
133 if nc -neps >=nw,
134 mask(neps +1: neps+nw) = -wf;
135 else
136 mask(neps +1:nc) = -wf(1:nc -neps);
137 end
138
139 mR = conv( RAKE , mask );
140 L = length(mR);
141 idx = find( obj.TX.modulator.indTH.signal ~= 0 );
142
143 for n=1:Nb,
144 for k=1:Ns,
145 i = idx((n-1)*Ns+k);
146 zs(n,k) = rx(i:i+L-1)*mR.’;
147 end
148 z(n) = sum(zs(n,:));
149 end
150
151 obj.Z = z;
152 end
153
154 function detector(obj)
155 obj.bit_est = -sign(obj.Z);
156 end
157
158 function BER_estimation(obj)
159 obj.BER_est=sum(abs(obj.bit_est -(obj.TX.encoder.a.signal )))/...
160 length(obj.bit_est );
161 end
162
163 % getter
164
165 % setter



2.3 presence of interference. 53

166
167 %% AUX
168
169
170
171
172 end
173
174 end

AXSignal
1 classdef AXSignal < handle
2 %AXSIGNAL Signal class.
3 % One -dimensional signals or sequences and their properties.
4
5 properties
6
7 fs=[]; % sampling frequency or rate [Hz]
8 signal =[]; % signal samples [V^2] or sequence values
9 t0=0; % Optional - time reference to first sample

10
11 end %properties
12
13 methods
14
15 % constructor
16 function obj = AXSignal(signal , fs)
17 obj.signal = signal;
18 obj.fs = fs;
19 end
20
21 % routines
22 function setEnergy(obj , E)
23 % E: desired energy [V^2 s]
24 Ts = 1/obj.fs;
25 alpha = norm(obj.signal )*sqrt(Ts/E);
26 obj.signal = obj.signal ./ alpha;
27 end
28 function en = getEnergy(obj)
29 Ts = 1/obj.fs;
30 en=Ts*norm( obj.signal )^2;
31 end
32 function setPower(obj , P)
33 % P: desired average power [V^2]
34 alpha = norm(obj.signal )/sqrt(length(obj.signal )*P);
35 obj.signal = obj.signal ./ alpha;
36 end
37 function pow = getPower(obj)
38 pow=norm( obj.signal )^2 / length(obj.signal );
39 end
40
41 function shiftsignal(obj , delta)
42 %SHIFTSIGNAL One -dimensional signal shift of delta [s].
43 % It moves the signal of delta*fs samples creating a
44 % longer version which is a translation of the first.
45 nshift = floor(abs( delta * obj.fs ));
46 if delta > 0,
47 obj.signal = [zeros(1,nshift) obj.signal ];
48 else
49 obj.signal = [obj.signal zeros(1,nshift )];
50 obj.t0 = obj.t0 - nshift / obj.fs; % = delta (slotted)
51 end
52 end
53
54
55 end %methods
56
57 end

AXSignalUWB
1 classdef AXSignalUWB < AXSignal
2 %AXSIGNALUWB UWB signal class.
3 % Subclass of signals.
4
5 properties
6
7 % - Special properties of UWB signals
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8 Tc=[]; % chip time [s]
9 Ts=[]; % frame or slot time or average PRT [s]

10 Np=[]; % code period
11 mode =[]; % modulation type (0=TH -PPM , 1=TH-PAM , 2=DS -PAM)
12 Tm=[]; % pulse duration
13 PdBm =[]; % power (averaged in 1 slot)
14 a=[]; % encoded sequence [symb]
15 b=[]; % bit [bit]
16 Nh=[]; % slot len in chips or max num of users mux in 1 slot
17
18 % - Non -mandatory to set
19 epsilon =[]; % PPM shift [s]
20 tau =[]; % pulse shaping factor (if 0, then rect -pulse)
21
22 % - Computed
23 c=[]; % code (TH-both or DS-PAM)
24 w=[]; % basis waveform , usually Scholtz -like (signal class)
25 ind =[]; % indicator function (where to put the waveforms)
26 indTH =[]; % partial indicator function (only time -hopped)
27 amp =[]; % amplitudes @ fs
28 indamp =[]; % comb -like function with modulated Dirac amplitudes
29 signalTH =[];% only -TH modulated signal (w/o PPM)
30
31 end
32
33 methods
34
35 % constructor
36 function obj = AXSignalUWB(mode , b, a, Tc , Ts , Nh , Np , Tm, ...
37 PdBm , fs, epsilon , tau)
38 obj = obj@AXSignal ([],fs);
39 obj.mode = mode;
40 obj.b = b;
41 obj.a = a;
42 obj.Tc = Tc;
43 obj.Ts = Ts;
44 obj.Nh = Nh;
45 obj.Np = Np;
46 obj.Tm = Tm;
47 obj.PdBm=PdBm;
48 obj.epsilon = epsilon;
49 obj.tau = tau;
50 end
51
52 % routines
53 function gencode(obj) % only 1 period
54 if obj.mode == 0, % PPM case
55 cod = round( (obj.Nh -1) * rand(1, obj.Np) );
56 obj.c = AXSignal(cod ,1/obj.Ts);
57 else % PAM case
58 cod = round( rand(1, obj.Np) );
59 obj.c = AXSignal ( -1+2*cod ,1/obj.Ts);
60 end
61 end
62 function genwf(obj)
63 dt=1/obj.fs;
64 t = [fliplr (-(0:dt:obj.Tm/2)) (dt:dt:obj.Tm/2)];
65
66 if obj.tau==0, % rect -pulse
67 L = length(t);
68 s = ones(1,L);
69 s( floor(L/2): end ) = 0;
70 s(1)=0;
71 %s(1)=0; s(end )=0;
72 else % Scholtz -pulse: 2nd order gaussian derivative
73 s = (1 -4.*pi.*((t./obj.tau ).^2)).*...
74 exp(-2.*pi.*((t./obj.tau ).^2));
75 end
76
77 obj.w = AXSignal(s, obj.fs);
78 obj.w.setEnergy (1);
79 end
80 function genind(obj)
81 %GENIND Indicator function generator.
82 % COMB represents a periodic Dirac function @ Ts
83 % COMBTH represents positions of TH signal
84 % COMBTHPPM represents positions of TH+PPM signal
85 Nb = length(obj.b.signal );
86 Na = length(obj.a.signal );
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87 Ns = Na / Nb;
88
89 nc = floor(obj.Tc * obj.fs); % chip size [sample]
90 ns = nc * obj.Nh; % slot size [sample]
91 neps = floor(obj.epsilon*obj.fs); % PPM shift size [sample]
92 n = ns .* Na; % ind. fun. size [sample]
93
94 comb = zeros(1,n);
95 combTH = zeros(1,n);
96 combTHPPM = zeros(1,n);
97
98 for k = 1 : Na,
99

100 % uniform pulse position
101 index = 1 + (k-1)*ns;
102 comb(index) = 1;
103
104 % introduction of TH
105 ck = obj.c.signal (1+mod(k-1,obj.Np));
106 combTH(index + ck*nc) = 1;
107
108 % introduction of PPM (after TH)
109 ak = obj.a.signal(k);
110 combTHPPM(index + ck*nc + (1+ak)/2* neps) = 1;
111
112 end
113
114 if obj.mode ==0 || obj.mode==1, % TH (PPM or PAM)
115 obj.ind = AXSignal(combTHPPM , 1);
116 obj.indTH = AXSignal(combTH , 1); %optimization tip: make
117 % idx vectors *not* logical but integer w/idx numbers
118 else % DS (PAM)
119 obj.ind = AXSignal(comb , 1);
120 end
121 end
122 function genamp(obj)
123 Nb = length(obj.b.signal );
124 Na = length(obj.a.signal );
125 Ns = Na / Nb;
126
127 nc = floor(obj.Tc * obj.fs); % chip size [sample]
128 ns = nc * obj.Nh; % slot size [sample]
129 neps = floor(obj.epsilon*obj.fs); % PPM shift size [sample]
130 n = ns .* Na; % ind. fun. size [sample]
131
132 Eslot = (10^( obj.PdBm /10))/1 e3 * obj.Ts;
133
134 ampl = ones(1, Na);
135
136 if obj.mode==0, % TH -PPM
137 ampl = sqrt(Eslot) * ampl;
138 elseif obj.mode==1, % TH-PAM
139 ampl = sqrt(Eslot) * obj.a.signal;
140 else % DS -PAM
141 q = floor( Na / obj.Np );
142 r = Na - q*obj.Np;
143 for k=1:q,
144 ampl( 1+(k-1)* obj.Np : k*obj.Np ) = obj.c.signal .* ...
145 obj.a.signal( 1+(k-1)* obj.Np : k*obj.Np );
146 end
147 ampl(Na-r+1:Na) = obj.c.signal (1:r) .* ...
148 obj.a.signal (1:r);
149 ampl = sqrt(Eslot) * ampl;
150 end
151
152 obj.amp = AXSignal( rectpulse(ampl ,ns), obj.fs );
153
154 end
155 function gensignal(obj)
156
157 n = length( obj.ind.signal );
158 nw = length( obj.w.signal );
159
160 obj.indamp = AXSignal(obj.ind.signal .*obj.amp.signal , obj.fs);
161 obj.signal = zeros(1, n + nw - 1);
162
163 obj.signal = sparseconv( obj.indamp.signal , obj.w.signal );
164
165 if obj.mode ==0 || obj.mode==1, % TH -case



2.3 presence of interference. 56

166 sTH = sparseconv( obj.indTH.signal .*obj.amp.signal ,...
167 obj.w.signal );
168 obj.signalTH = AXSignal( sTH , obj.fs );
169 end
170
171 end
172 function gen(obj)
173 obj.gencode;
174 obj.genwf;
175 obj.genind;
176 obj.genamp;
177 obj.gensignal;
178 end
179
180 end
181
182 end

AXSource
1 classdef AXSource < handle
2 %AXSOURCE Source class.
3 % Source of equally probable bits.
4
5 properties
6
7 Nb = []; % number of bits
8 Tb = []; % bit period [s]
9 b = []; % bits obj

10
11 end %properties
12
13 methods
14 %% Interface
15
16 % constructor
17 function obj = AXSource(Nb , Tb)
18 obj.Nb = Nb;
19 obj.Tb = Tb;
20 end
21
22 % execute
23 function exec(obj)
24 obj.genbit(obj.Nb ,obj.Tb);
25 end
26
27 % get
28 function s = getSignal(obj)
29 s = obj.b;
30 end
31
32 % set: no signal to set for the source
33
34 %% Aux routines
35
36 % genbit
37 function genbit(obj , Nb , Tb)
38 %GENBIT Bit generator.
39 % Source of Nb equiprobable bernoulli IID bits at rate 1/Tb.
40 bits = rand(1,Nb)>0.5 ;
41 obj.b = AXSignal( bits , 1/Tb );
42 end
43
44 end %methods
45
46 end

AXTransmitter
1 classdef AXTransmitter < handle
2 %AXTX Transmitter class.
3 % TX class.
4
5 properties
6
7 % External
8
9 % Internal

10 s; % Signal
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11
12 source; % Source obj
13 encoder; % Encoder obj
14 modulator; % Modulator obj
15
16 end %properties
17
18 methods
19 %% INTERFACE
20
21 % constructor
22 function obj = AXTransmitter(Nb , Tb , Ns, mod , Tc, Ts, Nh , ...
23 Np , Tm , PdBm , fs, epsilon , tau)
24
25 obj.source = AXSource(Nb ,Tb);
26 obj.source.exec;
27 is = obj.source.getSignal;
28 b = is; %bkp
29
30 obj.encoder = AXEncoder(Ns);
31 obj.encoder.setSignal(is);
32 obj.encoder.exec;
33 is = obj.encoder.getSignal;
34 a = is; %bkp
35
36 obj.modulator = AXModulator(mod ,Tc,Ts ,Nh ,Np,Tm ,...
37 PdBm ,fs,epsilon ,tau);
38 obj.modulator.setSignal(is);
39 obj.modulator.exec;
40 is = obj.modulator.getSignal;
41 suwb = is; %bkp
42
43 obj.s = is;
44 end
45 % execute
46
47 % getter
48
49 % setter
50
51 %% AUX
52
53 end
54
55 end
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